These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30659596)

  • 21. Tissue specific response of Miscanthus×giganteus to dilute acid pretreatment for enhancing cellulose digestibility.
    Ji Z; Zhang X; Ling Z; Sun RC; Xu F
    Carbohydr Polym; 2016 Dec; 154():247-56. PubMed ID: 27577916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment.
    Donohoe BS; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Bioeng; 2008 Dec; 101(5):913-25. PubMed ID: 18781690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of combined semi-humid chemo-mechanical pretreatment of lignocellulosic biomass in energy efficiency and waste generation.
    Chuetor S; Champreda V; Laosiripojana N
    Bioresour Technol; 2019 Nov; 292():121966. PubMed ID: 31419706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of aluminum chloride-catalyzed hydrothermal pretreatment on the structural characteristics of lignin and enzymatic hydrolysis.
    Shen XJ; Wang B; Huang PL; Wen JL; Sun RC
    Bioresour Technol; 2016 Apr; 206():57-64. PubMed ID: 26845220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Breakdown of cell wall nanostructure in dilute acid pretreated biomass.
    Pingali SV; Urban VS; Heller WT; McGaughey J; O'Neill H; Foston M; Myles DA; Ragauskas A; Evans BR
    Biomacromolecules; 2010 Sep; 11(9):2329-35. PubMed ID: 20726544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.
    Zhu JY; Pan XJ
    Bioresour Technol; 2010 Jul; 101(13):4992-5002. PubMed ID: 19969450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.
    Kim D
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29389875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiscale modelling of hydrothermal biomass pretreatment for chip size optimization.
    Hosseini SA; Shah N
    Bioresour Technol; 2009 May; 100(9):2621-8. PubMed ID: 19136256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Liquid Hot Water Pretreatment on Enzymatic Hydrolysis and Physicochemical Changes of Corncobs.
    Imman S; Laosiripojana N; Champreda V
    Appl Biochem Biotechnol; 2018 Feb; 184(2):432-443. PubMed ID: 28721652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Features of promising technologies for pretreatment of lignocellulosic biomass.
    Mosier N; Wyman C; Dale B; Elander R; Lee YY; Holtzapple M; Ladisch M
    Bioresour Technol; 2005 Apr; 96(6):673-86. PubMed ID: 15588770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergetic Dissolution of Branched Xylan and Lignin Opens the Way for Enzymatic Hydrolysis of Poplar Cell Wall.
    Zhou X; Ding D; You T; Zhang X; Takabe K; Xu F
    J Agric Food Chem; 2018 Apr; 66(13):3449-3456. PubMed ID: 29553741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lignins and lignocellulosics: a better control of synthesis for new and improved uses.
    Boudet AM; Kajita S; Grima-Pettenati J; Goffner D
    Trends Plant Sci; 2003 Dec; 8(12):576-81. PubMed ID: 14659706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of mechanical pulverization/phosphoric acid pretreatment of corn stover for enzymatic hydrolysis.
    Yu H; Xiao W; Han L; Huang G
    Bioresour Technol; 2019 Jun; 282():69-74. PubMed ID: 30851576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.
    Siripong P; Duangporn P; Takata E; Tsutsumi Y
    Bioresour Technol; 2016 Mar; 203():303-8. PubMed ID: 26744804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of mechanical refining to improve the production of low-cost sugars from lignocellulosic biomass.
    Park J; Jones B; Koo B; Chen X; Tucker M; Yu JH; Pschorn T; Venditti R; Park S
    Bioresour Technol; 2016 Jan; 199():59-67. PubMed ID: 26338276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of feedstock particle size on lignocellulose conversion--a review.
    Vidal BC; Dien BS; Ting KC; Singh V
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1405-21. PubMed ID: 21442289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates.
    Meng X; Ragauskas AJ
    Curr Opin Biotechnol; 2014 Jun; 27():150-8. PubMed ID: 24549148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.
    Crowe JD; Zarger RA; Hodge DB
    J Agric Food Chem; 2017 Oct; 65(39):8652-8662. PubMed ID: 28876068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials.
    Sun S; Sun S; Cao X; Sun R
    Bioresour Technol; 2016 Jan; 199():49-58. PubMed ID: 26321216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.