These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 30659844)
1. Multiple-command single-frequency SSVEP-based BCI system using flickering action video. Lim H; Ku J J Neurosci Methods; 2019 Feb; 314():21-27. PubMed ID: 30659844 [TBL] [Abstract][Full Text] [Related]
2. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation. Punsawad Y; Wongsawat Y Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060 [TBL] [Abstract][Full Text] [Related]
3. Multi-command SSVEP-based BCI system via single flickering frequency half-field stimulation pattern. Punsawad Y; Wongsawat Y Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1101-4. PubMed ID: 22254506 [TBL] [Abstract][Full Text] [Related]
4. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression. Lim H; Ku J IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2290-2296. PubMed ID: 30371380 [TBL] [Abstract][Full Text] [Related]
5. Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game. Son JE; Choi H; Lim H; Ku J Technol Health Care; 2020; 28(S1):509-519. PubMed ID: 32364183 [TBL] [Abstract][Full Text] [Related]
6. Mental fatigue in central-field and peripheral-field steady-state visually evoked potential and its effects on event-related potential responses. Lee MH; Williamson J; Lee YE; Lee SW Neuroreport; 2018 Oct; 29(15):1301-1308. PubMed ID: 30102642 [TBL] [Abstract][Full Text] [Related]
7. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals. Brunner C; Allison BZ; Altstätter C; Neuper C J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538 [TBL] [Abstract][Full Text] [Related]
8. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related]
9. Flickering exercise video produces mirror neuron system (MNS) activation and steady state visually evoked potentials (SSVEPs). Lim H; Ku J Biomed Eng Lett; 2017 Nov; 7(4):281-286. PubMed ID: 30603177 [TBL] [Abstract][Full Text] [Related]
10. Steady-State Visual Evoked Potential-Based Brain-Computer Interface Using a Novel Visual Stimulus with Quick Response (QR) Code Pattern. Siribunyaphat N; Punsawad Y Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214341 [TBL] [Abstract][Full Text] [Related]
11. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Chang MH; Lee JS; Heo J; Park KS J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770 [TBL] [Abstract][Full Text] [Related]
12. Effect of higher frequency on the classification of steady-state visual evoked potentials. Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712 [TBL] [Abstract][Full Text] [Related]
13. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality. Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130 [No Abstract] [Full Text] [Related]
14. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events. Wu Y; Li M; Wang J J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070 [TBL] [Abstract][Full Text] [Related]
15. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs. Ming G; Zhong H; Pei W; Gao X; Wang Y J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36827704 [No Abstract] [Full Text] [Related]
16. A novel command generation method for SSVEP-based BCI by introducing SSVEP blocking response. Yuan X; Zhang L; Sun Q; Lin X; Li C Comput Biol Med; 2022 Jul; 146():105521. PubMed ID: 35500376 [TBL] [Abstract][Full Text] [Related]
17. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs. Ming G; Pei W; Chen H; Gao X; Wang Y J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060 [No Abstract] [Full Text] [Related]
18. Brain-computer interface based on intermodulation frequency. Chen X; Chen Z; Gao S; Gao X J Neural Eng; 2013 Dec; 10(6):066009. PubMed ID: 24140740 [TBL] [Abstract][Full Text] [Related]
19. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
20. A new hybrid BCI paradigm based on P300 and SSVEP. Wang M; Daly I; Allison BZ; Jin J; Zhang Y; Chen L; Wang X J Neurosci Methods; 2015 Apr; 244():16-25. PubMed ID: 24997343 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]