These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 30660066)

  • 1. Comparative study of exoelectrogenic utilization preferences and hydrogen conversion among major fermentation products in microbial electrolysis cells.
    Choi Y; Kim D; Choi H; Cha J; Baek G; Lee C
    Bioresour Technol; 2024 Feb; 393():130032. PubMed ID: 38013038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of bioanodes rich in exoelectrogenic bacteria using iron-rich palaeomarine sediment inoculum.
    Ait-Itto FZ; Behan JA; Martinez M; Barrière F
    Bioelectrochemistry; 2024 Apr; 156():108618. PubMed ID: 37988978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose.
    Gomez-Flores M; Nakhla G; Hafez H
    AMB Express; 2017 Dec; 7(1):84. PubMed ID: 28429329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of biocompatible hydrogen evolution catalyst developed from metal-mix solutions with microbial electrosynthesis.
    de Smit SM; van Mameren TD; van Zwet K; van Veelen HPJ; Cristina Gagliano M; Strik DPBTB; Bitter JH
    Bioelectrochemistry; 2024 Aug; 158():108724. PubMed ID: 38714063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into furfural-tolerant and hydrogen-producing microbial consortia: Mechanism of furfural tolerance and hydrogen production.
    Luo LL; Zhu MJ
    Bioresour Technol; 2024 Jul; 407():131141. PubMed ID: 39047800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production from brown algae fermentation: Relationship between substrate reduction degree and hydrogen production.
    Li W; Lu L; Cheng C; Ren N; Yang ST; Liu M
    Bioresour Technol; 2022 Nov; 364():128069. PubMed ID: 36208827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying anaerobic amino acids degraders through the comparison of short-term and long-term enrichments.
    Mei R; Nobu MK; Liu WT
    Environ Microbiol Rep; 2020 Apr; 12(2):173-184. PubMed ID: 31965729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonelectroactive
    Liu X; Ye Y; Yang N; Cheng C; Rensing C; Jin C; Nealson KH; Zhou S
    ISME Commun; 2024 Jan; 4(1):ycae058. PubMed ID: 38770058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production pathways in Clostridia and their improvement by metabolic engineering.
    Mazzoli R; Pescarolo S; Gilli G; Gilardi G; Valetti F
    Biotechnol Adv; 2024; 73():108379. PubMed ID: 38754796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of microfabricated biocatalytic fuel cells.
    Sasaki S; Karube I
    Trends Biotechnol; 1999 Feb; 17(2):50-2. PubMed ID: 10087603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen and electrical energy co-generation by a cooperative fermentation system comprising Clostridium and microbial fuel cell inoculated with port drainage sediment.
    Dos Passos VF; Marcilio R; Aquino-Neto S; Santana FB; Dias ACF; Andreote FD; de Andrade AR; Reginatto V
    Bioresour Technol; 2019 Apr; 277():94-103. PubMed ID: 30660066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-production of hydrogen and electricity from macroalgae by simultaneous dark fermentation and microbial fuel cell.
    Gebreslassie TR; Nguyen PKT; Yoon HH; Kim J
    Bioresour Technol; 2021 Sep; 336():125269. PubMed ID: 34049167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.