These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 30660067)

  • 21. External Human-Machine Interfaces on Automated Vehicles: Effects on Pedestrian Crossing Decisions.
    de Clercq K; Dietrich A; Núñez Velasco JP; de Winter J; Happee R
    Hum Factors; 2019 Dec; 61(8):1353-1370. PubMed ID: 30912985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Driving Behavior during Right-Turn Maneuvers at Intersections on Left-Hand Traffic Roads.
    Matsui Y; Hosokawa N; Oikawa S
    Stapp Car Crash J; 2022 Nov; 66():217-238. PubMed ID: 37733827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study on the risk assessment of Pedestrian-Vehicle conflicts in channelized Right-Turn lanes based on the Hierarchical-Grey Entropy-Cloud model.
    Chen Z; Liang G; Chen Y; Yang X; Liu Y
    Accid Anal Prev; 2024 Sep; 205():107664. PubMed ID: 38878391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment pedestrian crossing safety using vehicle-pedestrian interaction data through two different approaches: Fixed videography (FV) vs In-Motion Videography (IMV).
    Sheykhfard A; Haghighi F
    Accid Anal Prev; 2020 Sep; 144():105661. PubMed ID: 32634763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An exploratory study of pedestrian crossing speeds at midblock crossing in India using LiDAR.
    Vasudevan V; Tiwari A; Chakroborty P
    Traffic Inj Prev; 2022; 23(1):61-66. PubMed ID: 35020500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual information of vehicle velocity acquired by pedestrians involved in road crossing accidents.
    Yokoya Y; Soma H
    Accid Anal Prev; 2021 Mar; 151():105912. PubMed ID: 33352523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Traffic accident risk assessment with dynamic microsimulation model using range-range rate graphs.
    Waizman G; Shoval S; Benenson I
    Accid Anal Prev; 2018 Oct; 119():248-262. PubMed ID: 30056202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deciding when to cross in front of an autonomous vehicle: How child and adult pedestrians respond to eHMI timing and vehicle kinematics.
    Devi Subramanian L; O'Neal EE; Kim NY; Noonan M; Plumert JM; Kearney JK
    Accid Anal Prev; 2024 Jul; 202():107567. PubMed ID: 38669901
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving the experience in the pedestrian's interaction with an autonomous vehicle: An ergonomic comparison of external HMI.
    Métayer N; Coeugnet S
    Appl Ergon; 2021 Oct; 96():103478. PubMed ID: 34116413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards an integrated approach of pedestrian behaviour and exposure.
    Papadimitriou E
    Accid Anal Prev; 2016 Jul; 92():139-52. PubMed ID: 27062004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The adaptability and challenges of autonomous vehicles to pedestrians in urban China.
    Wang K; Li G; Chen J; Long Y; Chen T; Chen L; Xia Q
    Accid Anal Prev; 2020 Sep; 145():105692. PubMed ID: 32717413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. "Outta my way!" Individual and environmental correlates of interactions between pedestrians and vehicles during street crossings.
    Cloutier MS; Lachapelle U; d'Amours-Ouellet AA; Bergeron J; Lord S; Torres J
    Accid Anal Prev; 2017 Jul; 104():36-45. PubMed ID: 28482177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microscopic simulation model for pedestrian-pedestrian and pedestrian-vehicle interactions at crosswalks.
    Liu M; Zeng W; Chen P; Wu X
    PLoS One; 2017; 12(7):e0180992. PubMed ID: 28715429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An RSSI-Based Low-Power Vehicle-Approach Detection Technique to Alert a Pedestrian.
    Watanabe Y; Shoji Y
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31878128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A pedestrian's smile and drivers' behavior: When a smile increases careful driving.
    Guéguen N; Eyssartier C; Meineri S
    J Safety Res; 2016 Feb; 56():83-8. PubMed ID: 26875169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing right-turning vehicle-pedestrian conflicts at intersections using an integrated microscopic simulation model.
    Chen P; Zeng W; Yu G
    Accid Anal Prev; 2019 Aug; 129():211-224. PubMed ID: 31170560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How Do Human-Driven Vehicles Avoid Pedestrians in Interactive Environments? A Naturalistic Driving Study.
    Sun S; Zhang Z; Zhang Z; Deng P; Tian K; Wei C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of the Effect of Human-Machine Co-Driving Vehicle on Pedestrian Crossing Speed at Uncontrolled Mid-Block Road Sections: A VR-Based Case Study.
    Wang K; Xu L; Jiang H
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analyzing vehicle-pedestrian interactions: Combining data cube structure and predictive collision risk estimation model.
    Noh B; Park H; Yeo H
    Accid Anal Prev; 2022 Feb; 165():106539. PubMed ID: 34929575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analyzing fault and severity in pedestrian-motor vehicle accidents in China.
    Zhang G; Yau KK; Zhang X
    Accid Anal Prev; 2014 Dec; 73():141-50. PubMed ID: 25238293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.