BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30660094)

  • 1. Supercritical water gasification of phenol over Ni-Ru bimetallic catalysts.
    Zhang J; Dasgupta A; Chen Z; Xu D; Savage PE; Guo Y
    Water Res; 2019 Apr; 152():12-20. PubMed ID: 30660094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic gasification of phenol in supercritical water over bimetallic Co-Ni/AC catalyst.
    Guan Q; Kong Z; Xie Z; Chen Y; Chen S; Tian S; Ning P
    Environ Technol; 2019 Jul; 40(16):2182-2190. PubMed ID: 29417900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen production via supercritical water gasification of bagasse using Ni-Cu/γ-Al2O3 nano-catalysts.
    Mehrani R; Barati M; Tavasoli A; Karimi A
    Environ Technol; 2015; 36(9-12):1265-72. PubMed ID: 25387488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrogen Production by Catalytic Supercritical Water Gasification: A Comparative Study.
    Tushar MSHK; DiMaria PC; Al-Salem SM; Dutta A; Xu CC
    ACS Omega; 2020 Jun; 5(25):15390-15401. PubMed ID: 32637813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of Phenol and Lignin as Components of Renewable Raw Materials on Pt and Ru-Supported Catalysts.
    Koklin AE; Bobrova NA; Bogdan TV; Mishanin II; Bogdan VI
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic Supercritical Water Gasification of Canola Straw with Promoted and Supported Nickel-Based Catalysts.
    Khandelwal K; Dalai AK
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical water gasification of microalgae over a two-component catalyst mixture.
    Duan PG; Li SC; Jiao JL; Wang F; Xu YP
    Sci Total Environ; 2018 Jul; 630():243-253. PubMed ID: 29477822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-rich syngas from wet municipal solid waste gasification using Ni/Waste marble powder catalyst promoted by transition metals.
    Irfan M; Li A; Zhang L; Ji G; Gao Y; Khushk S
    Waste Manag; 2021 Aug; 132():96-104. PubMed ID: 34325332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-rich gas production via steam gasification of food waste over basic oxides (MgO/CaO/SrO) promoted-Ni/Al
    Moogi S; Jang SH; Rhee GH; Ko CH; Choi YJ; Lee SH; Show PL; Andrew Lin KY; Park YK
    Chemosphere; 2022 Jan; 287(Pt 2):132224. PubMed ID: 34826918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a spent Ru/C catalyst after gasification of biomass in supercritical water.
    Wambach J; Schubert M; Döbeli M; Vogel F
    Chimia (Aarau); 2012; 66(9):706-11. PubMed ID: 23211730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.
    Louw J; Schwarz CE; Burger AJ
    Bioresour Technol; 2016 Feb; 201():111-20. PubMed ID: 26638140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercritical water gasification of landfill leachate for hydrogen production in the presence and absence of alkali catalyst.
    Weijin G; Binbin L; Qingyu W; Zuohua H; Liang Z
    Waste Manag; 2018 Mar; 73():439-446. PubMed ID: 29269283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical water gasification of an aqueous by-product from biomass hydrothermal liquefaction with novel Ru modified Ni catalysts.
    Zhang L; Champagne P; Charles Xu C
    Bioresour Technol; 2011 Sep; 102(17):8279-87. PubMed ID: 21741235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercritical gasification for the treatment of o-cresol wastewater.
    Wei CH; Hu CS; Wu CF; Yan B
    J Environ Sci (China); 2006; 18(4):644-9. PubMed ID: 17078539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biohydrogen production from catalytic conversion of food waste via steam and air gasification using eggshell- and homo-type Ni/Al
    Valizadeh S; Lam SS; Ko CH; Lee SH; Farooq A; Yu YJ; Jeon JK; Jung SC; Rhee GH; Park YK
    Bioresour Technol; 2021 Jan; 320(Pt B):124313. PubMed ID: 33197736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Ruthenium and Cerium Oxide (IV) Promotors on the Removal of Carbon Deposit Formed during the Mixed Methane Reforming Process.
    Zakrzewski M; Shtyka O; Ciesielski R; Kedziora A; Maniukiewicz W; Arcab N; Maniecki T
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen production from biomass gasification using biochar as a catalyst/support.
    Yao D; Hu Q; Wang D; Yang H; Wu C; Wang X; Chen H
    Bioresour Technol; 2016 Sep; 216():159-64. PubMed ID: 27240230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen production from hazardous petroleum sludge gasification over nickel-loaded porous ZSM-5 and Al
    Yim H; Valizadeh S; Park YK
    Environ Res; 2023 May; 225():115586. PubMed ID: 36858303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae gasification over Ni loaded perovskites for enhanced biohydrogen generation.
    Valizadeh S; Khani Y; Farooq A; Kumar G; Show PL; Chen WH; Lee SH; Park YK
    Bioresour Technol; 2023 Mar; 372():128638. PubMed ID: 36669624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose- and cellulose-derived Ni/C-SO3H catalysts for liquid phase phenol hydrodeoxygenation.
    Kasakov S; Zhao C; Baráth E; Chase ZA; Fulton JL; Camaioni DM; Vjunov A; Shi H; Lercher JA
    Chemistry; 2015 Jan; 21(4):1567-77. PubMed ID: 25431188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.