These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 30660163)
1. A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation. Mulvihill E; Schubert A; Sun X; Dunietz BD; Geva E J Chem Phys; 2019 Jan; 150(3):034101. PubMed ID: 30660163 [TBL] [Abstract][Full Text] [Related]
2. Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics. Mulvihill E; Gao X; Liu Y; Schubert A; Dunietz BD; Geva E J Chem Phys; 2019 Aug; 151(7):074103. PubMed ID: 31438690 [TBL] [Abstract][Full Text] [Related]
3. Simulating energy transfer dynamics in the Fenna-Matthews-Olson complex via the modified generalized quantum master equation. Mulvihill E; Lenn KM; Gao X; Schubert A; Dunietz BD; Geva E J Chem Phys; 2021 May; 154(20):204109. PubMed ID: 34241158 [TBL] [Abstract][Full Text] [Related]
4. A Road Map to Various Pathways for Calculating the Memory Kernel of the Generalized Quantum Master Equation. Mulvihill E; Geva E J Phys Chem B; 2021 Sep; 125(34):9834-9852. PubMed ID: 34424700 [TBL] [Abstract][Full Text] [Related]
5. A semiclassical generalized quantum master equation for an arbitrary system-bath coupling. Shi Q; Geva E J Chem Phys; 2004 Jun; 120(22):10647-58. PubMed ID: 15268091 [TBL] [Abstract][Full Text] [Related]
6. Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation. Zhang ML; Ka BJ; Geva E J Chem Phys; 2006 Jul; 125(4):44106. PubMed ID: 16942133 [TBL] [Abstract][Full Text] [Related]
7. Simulating the dynamics of electronic observables via reduced-dimensionality generalized quantum master equations. Mulvihill E; Geva E J Chem Phys; 2022 Jan; 156(4):044119. PubMed ID: 35105072 [TBL] [Abstract][Full Text] [Related]
8. Quasiclassical approaches to the generalized quantum master equation. Amati G; Saller MAC; Kelly A; Richardson JO J Chem Phys; 2022 Dec; 157(23):234103. PubMed ID: 36550031 [TBL] [Abstract][Full Text] [Related]
9. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model. Xu M; Yan Y; Liu Y; Shi Q J Chem Phys; 2018 Apr; 148(16):164101. PubMed ID: 29716231 [TBL] [Abstract][Full Text] [Related]
10. Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic Molecular Dynamics. Gao X; Saller MAC; Liu Y; Kelly A; Richardson JO; Geva E J Chem Theory Comput; 2020 May; 16(5):2883-2895. PubMed ID: 32227993 [TBL] [Abstract][Full Text] [Related]
11. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations. Kelly A; Brackbill N; Markland TE J Chem Phys; 2015 Mar; 142(9):094110. PubMed ID: 25747064 [TBL] [Abstract][Full Text] [Related]
12. Generalized quantum master equations in and out of equilibrium: When can one win? Kelly A; Montoya-Castillo A; Wang L; Markland TE J Chem Phys; 2016 May; 144(18):184105. PubMed ID: 27179469 [TBL] [Abstract][Full Text] [Related]
13. Efficient construction of generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical dynamics. Pfalzgraff WC; Montoya-Castillo A; Kelly A; Markland TE J Chem Phys; 2019 Jun; 150(24):244109. PubMed ID: 31255061 [TBL] [Abstract][Full Text] [Related]
14. Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics. Montoya-Castillo A; Reichman DR J Chem Phys; 2016 May; 144(18):184104. PubMed ID: 27179468 [TBL] [Abstract][Full Text] [Related]
16. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions. Montoya-Castillo A; Reichman DR J Chem Phys; 2017 Feb; 146(8):084110. PubMed ID: 28249417 [TBL] [Abstract][Full Text] [Related]
17. Simulating Open Quantum System Dynamics on NISQ Computers with Generalized Quantum Master Equations. Wang Y; Mulvihill E; Hu Z; Lyu N; Shivpuje S; Liu Y; Soley MB; Geva E; Batista VS; Kais S J Chem Theory Comput; 2023 Aug; 19(15):4851-4862. PubMed ID: 37233199 [TBL] [Abstract][Full Text] [Related]
18. Nonadiabatic Dynamics in Atomistic Environments: Harnessing Quantum-Classical Theory with Generalized Quantum Master Equations. Pfalzgraff WC; Kelly A; Markland TE J Phys Chem Lett; 2015 Dec; 6(23):4743-8. PubMed ID: 26563917 [TBL] [Abstract][Full Text] [Related]
19. Multiconfigurational Ehrenfest approach to quantum coherent dynamics in large molecular systems. Shalashilin DV Faraday Discuss; 2011; 153():105-16; discussion 189-212. PubMed ID: 22452076 [TBL] [Abstract][Full Text] [Related]
20. Electronically nonadiabatic dynamics via semiclassical initial value methods. Miller WH J Phys Chem A; 2009 Feb; 113(8):1405-15. PubMed ID: 19170628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]