These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30660250)

  • 1. Smells good enough to eat: Dimethyl sulfide (DMS) enhances copepod ingestion of microplastics.
    Procter J; Hopkins FE; Fileman ES; Lindeque PK
    Mar Pollut Bull; 2019 Jan; 138():1-6. PubMed ID: 30660250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus.
    Breckels MN; Bode NW; Codling EA; Steinke M
    Mar Drugs; 2013 Jul; 11(7):2486-500. PubMed ID: 23860240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus.
    Cole M; Lindeque P; Fileman E; Halsband C; Galloway TS
    Environ Sci Technol; 2015 Jan; 49(2):1130-7. PubMed ID: 25563688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability of Microplastics to Marine Zooplankton: Effect of Shape and Infochemicals.
    Botterell ZLR; Beaumont N; Cole M; Hopkins FE; Steinke M; Thompson RC; Lindeque PK
    Environ Sci Technol; 2020 Oct; 54(19):12024-12033. PubMed ID: 32927944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus.
    Coppock RL; Galloway TS; Cole M; Fileman ES; Queirós AM; Lindeque PK
    Sci Total Environ; 2019 Oct; 687():780-789. PubMed ID: 31412481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of microplastics exposure on ingestion, fecundity, development, and dimethylsulfide production in Tigriopus japonicus (Harpacticoida, copepod).
    Yu J; Tian JY; Xu R; Zhang ZY; Yang GP; Wang XD; Lai JG; Chen R
    Environ Pollut; 2020 Dec; 267():115429. PubMed ID: 32866870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging of microplastics promotes their ingestion by marine zooplankton.
    Vroom RJE; Koelmans AA; Besseling E; Halsband C
    Environ Pollut; 2017 Dec; 231(Pt 1):987-996. PubMed ID: 28898955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets.
    Cole M; Lindeque PK; Fileman E; Clark J; Lewis C; Halsband C; Galloway TS
    Environ Sci Technol; 2016 Mar; 50(6):3239-46. PubMed ID: 26905979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrary to Marine Environments, Common Microplastics in Freshwater Systems May Not Emit Dimethyl Sulfide: An Important Infochemical.
    Zink L; Pyle GG
    Bull Environ Contam Toxicol; 2019 Dec; 103(6):766-769. PubMed ID: 31587083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low microalgae availability increases the ingestion rates and potential effects of microplastics on marine copepod Pseudodiaptomus annandalei.
    Cheng Y; Wang J; Yi X; Li L; Liu X; Ru S
    Mar Pollut Bull; 2020 Mar; 152():110919. PubMed ID: 32479292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ingestion and impact of microplastics on arctic Calanus copepods.
    Rodríguez-Torres R; Almeda R; Kristiansen M; Rist S; Winding MS; Nielsen TG
    Aquat Toxicol; 2020 Nov; 228():105631. PubMed ID: 32992089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean.
    Desforges JP; Galbraith M; Ross PS
    Arch Environ Contam Toxicol; 2015 Oct; 69(3):320-30. PubMed ID: 26066061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds.
    Savoca MS; Wohlfeil ME; Ebeler SE; Nevitt GA
    Sci Adv; 2016 Nov; 2(11):e1600395. PubMed ID: 28861463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of microplastics on marine copepods.
    Bai Z; Wang N; Wang M
    Ecotoxicol Environ Saf; 2021 Jul; 217():112243. PubMed ID: 33915449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Behavior of Planktonic Copepods Minimizes the Entry of Microplastics in Marine Food Webs.
    Rodríguez Torres R; Almeda R; Xu J; Hartmann N; Rist S; Brun P; Nielsen TG
    Environ Sci Technol; 2023 Jan; 57(1):179-189. PubMed ID: 36548351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Nylon Microplastic on Feeding, Lipid Accumulation, and Moulting in a Coldwater Copepod.
    Cole M; Coppock R; Lindeque PK; Altin D; Reed S; Pond DW; Sørensen L; Galloway TS; Booth AM
    Environ Sci Technol; 2019 Jun; 53(12):7075-7082. PubMed ID: 31125216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suspended microplastics in a highly polluted bay: Abundance, size, and availability for mesozooplankton.
    Figueiredo GM; Vianna TMP
    Mar Pollut Bull; 2018 Oct; 135():256-265. PubMed ID: 30301037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First evidence of ingestion and retention of microplastics in seahorses (Hippocampus reidi) using copepods (Acartia tonsa) as transfer vectors.
    Domínguez-López M; Bellas J; Sánchez-Ruiloba L; Planas M; Hernández-Urcera J
    Sci Total Environ; 2022 Apr; 818():151688. PubMed ID: 34793797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris.
    Heindler FM; Alajmi F; Huerlimann R; Zeng C; Newman SJ; Vamvounis G; van Herwerden L
    Ecotoxicol Environ Saf; 2017 Jul; 141():298-305. PubMed ID: 28365455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre.
    Ory NC; Sobral P; Ferreira JL; Thiel M
    Sci Total Environ; 2017 May; 586():430-437. PubMed ID: 28196756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.