BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30660369)

  • 1. ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state.
    De Los Angeles A; Elsworth JD; Redmond DE
    Biochem Biophys Res Commun; 2019 Feb; 510(1):78-84. PubMed ID: 30660369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of ERK-Independent Human and Non-Human Primate Pluripotent Stem Cells.
    De Los Angeles A
    Curr Protoc Stem Cell Biol; 2019 Jun; 49(1):e85. PubMed ID: 30995363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryonic Chimeras with Human Pluripotent Stem Cells.
    De Los Angeles A; Sakurai M; Wu J
    Methods Mol Biol; 2019; 2005():125-151. PubMed ID: 31175650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation.
    De Los Angeles A
    Exp Cell Res; 2020 Feb; 387(1):111747. PubMed ID: 31778671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating Human Organs via Interspecies Chimera Formation: Advances and Barriers.
    De Los Angeles A; Pho N; Redmond DE
    Yale J Biol Med; 2018 Sep; 91(3):333-342. PubMed ID: 30258320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Pluripotency Continuum and Interspecies Chimeras.
    De Los Angeles A
    Curr Protoc Stem Cell Biol; 2019 Sep; 50(1):e87. PubMed ID: 31184444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells.
    Masaki H; Kato-Itoh M; Umino A; Sato H; Hamanaka S; Kobayashi T; Yamaguchi T; Nishimura K; Ohtaka M; Nakanishi M; Nakauchi H
    Development; 2015 Sep; 142(18):3222-30. PubMed ID: 26023098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frontiers of Pluripotency.
    De Los Angeles A
    Methods Mol Biol; 2019; 2005():3-27. PubMed ID: 31175642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras.
    Zheng C; Ballard EB; Wu J
    Development; 2021 Jun; 148(12):. PubMed ID: 34132325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-Monkey Chimeras for Modeling Human Disease: Opportunities and Challenges.
    De Los Angeles A; Hyun I; Latham SR; Elsworth JD; Redmond DE
    Methods Mol Biol; 2019; 2005():221-231. PubMed ID: 31175656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interspecies Chimeric Barriers for Generating Exogenic Organs and Cells for Transplantation.
    Strell P; Shetty A; Steer CJ; Low WC
    Cell Transplant; 2022; 31():9636897221110525. PubMed ID: 36173102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs.
    Fu R; Yu D; Ren J; Li C; Wang J; Feng G; Wang X; Wan H; Li T; Wang L; Zhang Y; Hai T; Li W; Zhou Q
    Protein Cell; 2020 Feb; 11(2):97-107. PubMed ID: 31781970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-Monkey Chimeras for Modeling Human Disease: Opportunities and Challenges.
    De Los Angeles A; Hyun I; Latham SR; Elsworth JD; Redmond DE
    Stem Cells Dev; 2018 Dec; 27(23):1599-1604. PubMed ID: 30319057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hurdles to Generating Human Islets in Animals via Blastocyst Complementation.
    Yamaguchi T
    Curr Diab Rep; 2019 Jun; 19(8):45. PubMed ID: 31236713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells.
    Aksoy I; Rognard C; Moulin A; Marcy G; Masfaraud E; Wianny F; Cortay V; Bellemin-Ménard A; Doerflinger N; Dirheimer M; Mayère C; Bourillot PY; Lynch C; Raineteau O; Joly T; Dehay C; Serrano M; Afanassieff M; Savatier P
    Stem Cell Reports; 2021 Jan; 16(1):56-74. PubMed ID: 33382978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Pluripotent Stem Cell States and Their Applications.
    Wu J; Izpisua Belmonte JC
    Cell Stem Cell; 2015 Nov; 17(5):509-25. PubMed ID: 26544113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo.
    Tan T; Wu J; Si C; Dai S; Zhang Y; Sun N; Zhang E; Shao H; Si W; Yang P; Wang H; Chen Z; Zhu R; Kang Y; Hernandez-Benitez R; Martinez Martinez L; Nuñez Delicado E; Berggren WT; Schwarz M; Ai Z; Li T; Rodriguez Esteban C; Ji W; Niu Y; Izpisua Belmonte JC
    Cell; 2021 Apr; 184(8):2020-2032.e14. PubMed ID: 33861963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth Competition in Interspecies Chimeras: A New Paradigm for Blastocyst Complementation.
    Ballard EB; Wu J
    Cell Stem Cell; 2021 Jan; 28(1):3-5. PubMed ID: 33417870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-animal interspecies chimerism via blastocyst complementation: advances, challenges and perspectives: a narrative review.
    Li Y; Huang K
    Stem Cell Investig; 2021; 8():20. PubMed ID: 34815975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An expedition in the jungle of pluripotent stem cells of non-human primates.
    Anwised P; Moorawong R; Samruan W; Somredngan S; Srisutush J; Laowtammathron C; Aksoy I; Parnpai R; Savatier P
    Stem Cell Reports; 2023 Nov; 18(11):2016-2037. PubMed ID: 37863046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.