These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 30660589)

  • 1. A fluorescence-based activity assay for immobilized lipases in non-native media.
    Ingenbosch KN; Rousek A; Wunschik DS; Hoffmann-Jacobsen K
    Anal Biochem; 2019 Mar; 569():22-27. PubMed ID: 30660589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives.
    Siódmiak J; Dulęba J; Kocot N; Mastalerz R; Haraldsson GG; Marszałł MP; Siódmiak T
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the immobilization of lipases on hydrophobic wrinkled silica nanoparticles.
    Pota G; Andrés-Sanz D; Gallego M; Vitiello G; López-Gallego F; Costantini A; Califano V
    Int J Biol Macromol; 2024 May; 266(Pt 1):131022. PubMed ID: 38522688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption.
    Rueda N; Albuquerque TL; Bartolome-Cabrero R; Fernandez-Lopez L; Torres R; Ortiz C; Dos Santos JC; Barbosa O; Fernandez-Lafuente R
    Molecules; 2016 May; 21(5):. PubMed ID: 27196882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metagenomic discovery of lipases with predicted structural similarity to Candida antarctica lipase B.
    Jaito N; Kaewsawat N; Phetlum S; Uengwetwanit T
    PLoS One; 2023; 18(12):e0295397. PubMed ID: 38055755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of diisooctyl 2,5-furandicarboxylate by Candida antarctica lipase B (CALB) immobilized on a macroporous epoxy resin.
    Mang R; Zhou Y; Du X; Zhou H; Zhu M
    Biotechnol Appl Biochem; 2023 Oct; 70(5):1772-1780. PubMed ID: 37264706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the Behavior of Deep Eutectic Solvents upon Addition of Water: Its Effects over a Catalytic Reaction.
    Campodónico PR; Alarcón-Espósito J; Alcázar JJ; Olivares B; Suárez-Rozas C
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic solvent tolerant lipases and applications.
    Sharma S; Kanwar SS
    ScientificWorldJournal; 2014; 2014():625258. PubMed ID: 24672342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Organic Solvent-Tolerant Lipase with Both Hydrolytic and Synthetic Activities from the Oleaginous Fungus Mortierella echinosphaera.
    Kotogán A; Zambrano C; Kecskeméti A; Varga M; Szekeres A; Papp T; Vágvölgyi C; Takó M
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29642574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial lipases and their industrial applications: a comprehensive review.
    Chandra P; Enespa ; Singh R; Arora PK
    Microb Cell Fact; 2020 Aug; 19(1):169. PubMed ID: 32847584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic Desymmetrisation of Prochiral
    Cristofori V; Illuminati D; Bisquoli C; Catani M; Compagnin G; Turrin G; Trapella C; Fantinati A
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanodiamonds and natural deep eutectic solvents as potential carriers for lipase.
    Putra SSS; Chew CY; Hayyan A; Elgharbawy AAM; Taskin-Tok T; Hayyan M; Ngoh GC; Saleh J; Al Abdulmonem W; Alghsham RS; Nor MRM; Aldaihani AGH; Basirun WJ
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132245. PubMed ID: 38729477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase B from Candida antarctica immobilized on amphiphilic Janus halloysite nanosheet and application in biphasic interface conversion.
    Yin L; Gao K; Mao X; Hu Y
    Food Chem; 2024 Mar; 437(Pt 1):137787. PubMed ID: 37897826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance.
    Cui H; Eltoukhy L; Zhang L; Markel U; Jaeger KE; Davari MD; Schwaneberg U
    Angew Chem Int Ed Engl; 2021 May; 60(20):11448-11456. PubMed ID: 33687787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on Arthrobacter sp. lipase: A versatile biocatalyst for the kinetic resolution to access enantiomerically pure/enriched compounds.
    Gupta P; Chaubey A; Mahajan N; Anand N
    Chirality; 2021 May; 33(5):209-225. PubMed ID: 33675087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of the chemical modification on immobilized lipase features are affected by the enzyme crowding in the support.
    Abellanas-Perez P; Carballares D; Rocha-Martin J; Fernandez-Lafuente R
    Biotechnol Prog; 2024; 40(1):e3394. PubMed ID: 37828788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of immobilized lipase in non-aqueous systems by hydrophobic poly-DL-tryptophan tethers.
    Schilke KF; Kelly C
    Biotechnol Bioeng; 2008 Sep; 101(1):9-18. PubMed ID: 18393315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent Tolerance Improvement of Lipases Enhanced Their Applications: State of the Art.
    Chen M; Jin T; Nian B; Cheng W
    Molecules; 2024 May; 29(11):. PubMed ID: 38893320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic studies of a lipase unveil effect of pH on hydrolysis products of small PET modules.
    Świderek K; Velasco-Lozano S; Galmés MÀ; Olazabal I; Sardon H; López-Gallego F; Moliner V
    Nat Commun; 2023 Jun; 14(1):3556. PubMed ID: 37321996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-Aqueous Organic System: A Neglected Model in Computational Lipase Design?
    Wang S; Xu Y; Yu XW
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34200257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.