These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30660757)

  • 1. In vivo measurement of blood clot mechanics from computational fluid dynamics based on intravital microscopy images.
    Kadri OE; Chandran VD; Surblyte M; Voronov RS
    Comput Biol Med; 2019 Mar; 106():1-11. PubMed ID: 30660757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the endothelial cell responsible for the thrombus core and shell architecture?
    Kadri OE; Surblyte M; Chandran VD; Voronov RS
    Med Hypotheses; 2019 Aug; 129():109244. PubMed ID: 31371073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injury Length and Arteriole Constriction Shape Clot Growth and Blood-Flow Acceleration in a Mouse Model of Thrombosis.
    Mitrophanov AY; Merrill-Skoloff G; Grover SP; Govindarajan V; Kolanjiyil A; Hariprasad DS; Unnikrishnan G; Flaumenhaft R; Reifman J
    Arterioscler Thromb Vasc Biol; 2020 Sep; 40(9):2114-2126. PubMed ID: 32640902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating clot-flow interactions by integrating intravital imaging with in silico modeling for analysis of flow, transport, and hemodynamic forces.
    Teeraratkul C; Tomaiuolo M; Stalker TJ; Mukherjee D
    Sci Rep; 2024 Jan; 14(1):696. PubMed ID: 38184693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of intrathrombus fluid and solute transport using in vivo clot structures with single platelet resolution.
    Voronov RS; Stalker TJ; Brass LF; Diamond SL
    Ann Biomed Eng; 2013 Jun; 41(6):1297-307. PubMed ID: 23423707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of enzyme activated milk for in vitro simulation of prosthetic valve thrombosis.
    Keggen LA; Black MM; Lawford PV; Hose DR; Strachan JR
    J Heart Valve Dis; 1996 Jan; 5(1):74-83. PubMed ID: 8834729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of blood clot degradation fragment sizes in relation to plasma flow velocity.
    Bajd F; Vidmar J; Blinc A; Serša I
    Gen Physiol Biophys; 2012 Sep; 31(3):237-45. PubMed ID: 23047936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow.
    Xu S; Xu Z; Kim OV; Litvinov RI; Weisel JW; Alber M
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29142014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image-Based Flow Simulations of Pre- and Post-left Atrial Appendage Closure in the Left Atrium.
    Jia D; Jeon B; Park HB; Chang HJ; Zhang LT
    Cardiovasc Eng Technol; 2019 Jun; 10(2):225-241. PubMed ID: 30953246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational thrombus formation model: application to an idealized two-dimensional aneurysm treated with bare metal coils.
    Horn JD; Maitland DJ; Hartman J; Ortega JM
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1821-1838. PubMed ID: 30074100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation.
    Rayz VL; Boussel L; Lawton MT; Acevedo-Bolton G; Ge L; Young WL; Higashida RT; Saloner D
    Ann Biomed Eng; 2008 Nov; 36(11):1793-804. PubMed ID: 18787954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic and computational study of structural properties and resistance to flow of blood clots under arterial shear.
    Mitrophanov AY; Govindarajan V; Zhu S; Li R; Lu Y; Diamond SL; Reifman J
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1461-1474. PubMed ID: 31055691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A coupled chemo-fluidic computational model for thrombogenesis in infarcted left ventricles.
    Seo JH; Abd T; George RT; Mittal R
    Am J Physiol Heart Circ Physiol; 2016 Jun; 310(11):H1567-82. PubMed ID: 27016582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computed tomography angiography as an adjunct to computational fluid dynamics for prediction of oxygenator thrombus formation.
    Conway RG; Zhang J; Jeudy J; Evans C; Li T; Wu ZJ; Griffith BP
    Perfusion; 2021 Apr; 36(3):285-292. PubMed ID: 32723149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravital Microscopy in the Cremaster Muscle Microcirculation for Endothelial Dysfunction Studies.
    Rius C; Sanz MJ
    Methods Mol Biol; 2015; 1339():357-66. PubMed ID: 26445803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcirculation in the murine liver: a computational fluid dynamic model based on 3D reconstruction from in vivo microscopy.
    Piergiovanni M; Bianchi E; Capitani G; Li Piani I; Ganzer L; Guidotti LG; Iannacone M; Dubini G
    J Biomech; 2017 Oct; 63():125-134. PubMed ID: 28917579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling blood flow around a thrombus using a hybrid particle-continuum approach.
    Mukherjee D; Shadden SC
    Biomech Model Mechanobiol; 2018 Jun; 17(3):645-663. PubMed ID: 29181799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrin, γ'-fibrinogen, and transclot pressure gradient control hemostatic clot growth during human blood flow over a collagen/tissue factor wound.
    Muthard RW; Welsh JD; Brass LF; Diamond SL
    Arterioscler Thromb Vasc Biol; 2015 Mar; 35(3):645-54. PubMed ID: 25614284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of thrombus formation in shear flows using Lattice Boltzmann Method.
    Tamagawa M; Kaneda H; Hiramoto M; Nagahama S
    Artif Organs; 2009 Aug; 33(8):604-10. PubMed ID: 19624585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a multi-physics modelling framework for thrombolysis under the influence of blood flow.
    Piebalgs A; Xu XY
    J R Soc Interface; 2015 Dec; 12(113):20150949. PubMed ID: 26655469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.