These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 30660847)

  • 41. Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds.
    Wojcieszyńska D; Marchlewicz A; Guzik U
    Molecules; 2020 Sep; 25(19):. PubMed ID: 33003396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging contaminants in Indian environmental matrices - A review.
    Philip JM; Aravind UK; Aravindakumar CT
    Chemosphere; 2018 Jan; 190():307-326. PubMed ID: 28992484
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes.
    Saravanan A; Kumar PS; Vo DN; Jeevanantham S; Karishma S; Yaashikaa PR
    J Hazard Mater; 2021 Oct; 419():126451. PubMed ID: 34174628
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Laccases: structure, function, and potential application in water bioremediation.
    Arregui L; Ayala M; Gómez-Gil X; Gutiérrez-Soto G; Hernández-Luna CE; Herrera de Los Santos M; Levin L; Rojo-Domínguez A; Romero-Martínez D; Saparrat MCN; Trujillo-Roldán MA; Valdez-Cruz NA
    Microb Cell Fact; 2019 Nov; 18(1):200. PubMed ID: 31727078
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview.
    Rahman MU; Ullah MW; Shah JA; Sethupathy S; Bilal H; Abdikakharovich SA; Khan AU; Khan KA; Elboughdiri N; Zhu D
    Sci Total Environ; 2024 Mar; 918():170498. PubMed ID: 38307266
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry.
    Zofair SFF; Ahmad S; Hashmi MA; Khan SH; Khan MA; Younus H
    J Environ Manage; 2022 May; 309():114676. PubMed ID: 35151142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes.
    Naghdi M; Taheran M; Brar SK; Kermanshahi-Pour A; Verma M; Surampalli RY
    Environ Pollut; 2018 Mar; 234():190-213. PubMed ID: 29175684
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent developments in the use of tyrosinase and laccase in environmental applications.
    Ba S; Vinoth Kumar V
    Crit Rev Biotechnol; 2017 Nov; 37(7):819-832. PubMed ID: 28330374
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microalgal-based bioremediation of emerging contaminants: Mechanisms and challenges.
    Kumar N; Shukla P
    Environ Pollut; 2023 Nov; 337():122591. PubMed ID: 37739258
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transformation of 17beta-estradiol mediated by lignin peroxidase: the role of veratryl alcohol.
    Mao L; Lu J; Gao S; Huang Q
    Arch Environ Contam Toxicol; 2010 Jul; 59(1):13-9. PubMed ID: 20035325
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biocatalytic remediation of pharmaceutically active micropollutants for environmental sustainability.
    Bilal M; Lam SS; Iqbal HMN
    Environ Pollut; 2022 Jan; 293():118582. PubMed ID: 34856243
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tricks and tracks of prevalence, occurrences, treatment technologies, and challenges of mixtures of emerging contaminants in the environment: With special emphasis on microplastic.
    Sudarsan JS; Dogra K; Kumar R; Raval NP; Leifels M; Mukherjee S; Trivedi MH; Jain MS; Zang J; Barceló D; Mahlknecht J; Kumar M
    J Contam Hydrol; 2024 Jul; 265():104389. PubMed ID: 38941876
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymeric pollutant biodegradation through microbial oxidoreductase: A better strategy to safe environment.
    Khatoon N; Jamal A; Ali MI
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):9-16. PubMed ID: 28648638
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lessons learned from more than two decades of research on emerging contaminants in the environment.
    Noguera-Oviedo K; Aga DS
    J Hazard Mater; 2016 Oct; 316():242-51. PubMed ID: 27241399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peroxidase enzymes as green catalysts for bioremediation and biotechnological applications: A review.
    Sellami K; Couvert A; Nasrallah N; Maachi R; Abouseoud M; Amrane A
    Sci Total Environ; 2022 Feb; 806(Pt 2):150500. PubMed ID: 34852426
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review.
    Zhang D; Gersberg RM; Ng WJ; Tan SK
    Environ Pollut; 2014 Jan; 184():620-39. PubMed ID: 24080393
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removing environmental organic pollutants with bioremediation and phytoremediation.
    Kang JW
    Biotechnol Lett; 2014 Jun; 36(6):1129-39. PubMed ID: 24563299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Origin, types, and contribution of emerging pollutants to environmental degradation and their remediation by physical and chemical techniques.
    Santhappan JS; Kalaiselvan N; Assis SM; Amjith LR; Glivin G; Mathimani T
    Environ Res; 2024 Sep; 257():119369. PubMed ID: 38848998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review.
    Kadri T; Rouissi T; Kaur Brar S; Cledon M; Sarma S; Verma M
    J Environ Sci (China); 2017 Jan; 51():52-74. PubMed ID: 28115152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.