BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30661088)

  • 1. IDH-1 deficiency induces growth defects and metabolic alterations in GSPD-1-deficient Caenorhabditis elegans.
    Yang HC; Yu H; Liu YC; Chen TL; Stern A; Lo SJ; Chiu DT
    J Mol Med (Berl); 2019 Mar; 97(3):385-396. PubMed ID: 30661088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans.
    Yang HC; Chen TL; Wu YH; Cheng KP; Lin YH; Cheng ML; Ho HY; Lo SJ; Chiu DT
    Cell Death Dis; 2013 May; 4(5):e616. PubMed ID: 23640458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism.
    Chen TL; Yang HC; Hung CY; Ou MH; Pan YY; Cheng ML; Stern A; Lo SJ; Chiu DT
    Cell Death Dis; 2017 Jan; 8(1):e2545. PubMed ID: 28079896
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Yang HC; Yu H; Ma TH; Tjong WY; Stern A; Chiu DT
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33217954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired immune response and barrier function in GSPD-1-deficient
    Yang WH; Chen PH; Chang HH; Kwok HL; Stern A; Soo PC; Chen JH; Yang HC
    Curr Res Microb Sci; 2023; 4():100181. PubMed ID: 36798906
    [No Abstract]   [Full Text] [Related]  

  • 6. Modeling human glucose-6-phosphate dehydrogenase mutations using
    Loges LN; Walstrom KM
    MicroPubl Biol; 2021; 2021():. PubMed ID: 34532700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylglyoxal-induced modification of arginine residues decreases the activity of NADPH-generating enzymes.
    Morgan PE; Sheahan PJ; Pattison DI; Davies MJ
    Free Radic Biol Med; 2013 Aug; 61():229-42. PubMed ID: 23579026
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    White K; Kim MJ; Ding D; Han C; Park HJ; Meneses Z; Tanokura M; Linser P; Salvi R; Someya S
    J Neurosci; 2017 Jun; 37(23):5770-5781. PubMed ID: 28473643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer.
    Yang HC; Wu YH; Yen WC; Liu HY; Hwang TL; Stern A; Chiu DT
    Cells; 2019 Sep; 8(9):. PubMed ID: 31500396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme is not limiting for nitrogen assimilation.
    Lemaitre T; Urbanczyk-Wochniak E; Flesch V; Bismuth E; Fernie AR; Hodges M
    Plant Physiol; 2007 Jul; 144(3):1546-58. PubMed ID: 17468208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of carbohydrate metabolism and redox state controls dauer larva formation in Caenorhabditis elegans.
    Penkov S; Kaptan D; Erkut C; Sarov M; Mende F; Kurzchalia TV
    Nat Commun; 2015 Aug; 6():8060. PubMed ID: 26290173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress.
    Ho HY; Cheng ML; Shiao MS; Chiu DT
    Free Radic Biol Med; 2013 Jan; 54():71-84. PubMed ID: 23142419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in Caenorhabditis elegans.
    Feng L; Shou Q; Butcher RA
    Biochem J; 2016 Jun; 473(11):1507-21. PubMed ID: 27009306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH production, a growth marker, is stimulated by maslinic acid in gilthead sea bream by increased NADP-IDH and ME expression.
    Rufino-Palomares EE; Reyes-Zurita FJ; García-Salguero L; Peragón J; de la Higuera M; Lupiáñez JA
    Comp Biochem Physiol C Toxicol Pharmacol; 2016 Sep; 187():32-42. PubMed ID: 27178358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans.
    Li Y; Paik YK
    BMB Rep; 2011 Apr; 44(4):285-90. PubMed ID: 21524356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple cellular consequences of isocitrate dehydrogenase isozyme dysfunction.
    McCammon MT; McAlister-Henn L
    Arch Biochem Biophys; 2003 Nov; 419(2):222-33. PubMed ID: 14592466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose-6-phosphate dehydrogenase modulates cytosolic redox status and contractile phenotype in adult cardiomyocytes.
    Jain M; Brenner DA; Cui L; Lim CC; Wang B; Pimentel DR; Koh S; Sawyer DB; Leopold JA; Handy DE; Loscalzo J; Apstein CS; Liao R
    Circ Res; 2003 Jul; 93(2):e9-16. PubMed ID: 12829617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a low-activity allele of NADP+-dependent isocitrate dehydrogenase from Drosophila melanogaster.
    Bentley MM; Meidinger RG; Williamson JH
    Biochem Genet; 1983 Aug; 21(7-8):725-33. PubMed ID: 6414457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis.
    Siler U; Romao S; Tejera E; Pastukhov O; Kuzmenko E; Valencia RG; Meda Spaccamela V; Belohradsky BH; Speer O; Schmugge M; Kohne E; Hoenig M; Freihorst J; Schulz AS; Reichenbach J
    J Allergy Clin Immunol; 2017 Jan; 139(1):212-219.e3. PubMed ID: 27458052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation.
    Long X; Spycher C; Han ZS; Rose AM; Müller F; Avruch J
    Curr Biol; 2002 Sep; 12(17):1448-61. PubMed ID: 12225660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.