These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 30661167)
1. Synthesis and characterization of exfoliated biochar from four agricultural feedstock. Roy S; Kumar U; Bhattacharyya P Environ Sci Pollut Res Int; 2019 Mar; 26(7):7272-7276. PubMed ID: 30661167 [TBL] [Abstract][Full Text] [Related]
2. Characterization and 2D structural model of corn straw and poplar leaf biochars. Zhao N; Lv Y; Yang X; Huang F; Yang J Environ Sci Pollut Res Int; 2018 Sep; 25(26):25789-25798. PubMed ID: 29270898 [TBL] [Abstract][Full Text] [Related]
3. Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw. Ryu DJ; Oh RG; Seo YD; Oh SY; Ryu KS Environ Sci Pollut Res Int; 2015 Jul; 22(14):10405-12. PubMed ID: 25821037 [TBL] [Abstract][Full Text] [Related]
4. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Jeong CY; Dodla SK; Wang JJ Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554 [TBL] [Abstract][Full Text] [Related]
5. Effect of pyrolysis temperature on chemical and surface properties of biochar of rapeseed (Brassica napus L.). Angin D; Sensöz S Int J Phytoremediation; 2014; 16(7-12):684-93. PubMed ID: 24933878 [TBL] [Abstract][Full Text] [Related]
6. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041 [TBL] [Abstract][Full Text] [Related]
7. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875 [TBL] [Abstract][Full Text] [Related]
8. Preparation and Characterization of MgO-Modified Rice Straw Biochars. Qin X; Luo J; Liu Z; Fu Y Molecules; 2020 Dec; 25(23):. PubMed ID: 33291812 [TBL] [Abstract][Full Text] [Related]
9. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Kim KH; Kim JY; Cho TS; Choi JW Bioresour Technol; 2012 Aug; 118():158-62. PubMed ID: 22705519 [TBL] [Abstract][Full Text] [Related]
10. Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Ahmad M; Ahmad M; Usman ARA; Al-Faraj AS; Abduljabbar A; Ok YS; Al-Wabel MI Environ Geochem Health; 2019 Aug; 41(4):1687-1704. PubMed ID: 28337620 [TBL] [Abstract][Full Text] [Related]
11. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. Rafiq MK; Bachmann RT; Rafiq MT; Shang Z; Joseph S; Long R PLoS One; 2016; 11(6):e0156894. PubMed ID: 27327870 [TBL] [Abstract][Full Text] [Related]
12. Adsorption of hydrogen sulfide by biochars derived from pyrolysis of different agricultural/forestry wastes. Shang G; Li Q; Liu L; Chen P; Huang X J Air Waste Manag Assoc; 2016 Jan; 66(1):8-16. PubMed ID: 26447857 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Pariyar P; Kumari K; Jain MK; Jadhao PS Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240 [TBL] [Abstract][Full Text] [Related]
14. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. Domingues RR; Trugilho PF; Silva CA; Melo ICNA; Melo LCA; Magriotis ZM; Sánchez-Monedero MA PLoS One; 2017; 12(5):e0176884. PubMed ID: 28493951 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388 [TBL] [Abstract][Full Text] [Related]
16. Biochars derived from various crop straws: characterization and Cd(II) removal potential. Sun J; Lian F; Liu Z; Zhu L; Song Z Ecotoxicol Environ Saf; 2014 Aug; 106():226-31. PubMed ID: 24859708 [TBL] [Abstract][Full Text] [Related]
17. Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management. Kumar A; Bhattacharya T; Shaikh WA; Roy A; Mukherjee S; Kumar M Environ Res; 2021 Sep; 200():111758. PubMed ID: 34303680 [TBL] [Abstract][Full Text] [Related]
18. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Lee Y; Park J; Ryu C; Gang KS; Yang W; Park YK; Jung J; Hyun S Bioresour Technol; 2013 Nov; 148():196-201. PubMed ID: 24047681 [TBL] [Abstract][Full Text] [Related]
19. Biochar production from various low-cost marine wastes using different production methods: Characterization of biochar and marine feedstock for agricultural purposes. İlay R Mar Pollut Bull; 2024 Aug; 205():116623. PubMed ID: 38964191 [TBL] [Abstract][Full Text] [Related]
20. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Xiao X; Chen B; Zhu L Environ Sci Technol; 2014 Mar; 48(6):3411-9. PubMed ID: 24601595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]