These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30661582)

  • 1. Carbon dot-decorated porous organic cage as fluorescent sensor for rapid discrimination of nitrophenol isomers and chiral alcohols.
    Lu Z; Lu X; Zhong Y; Hu Y; Li G; Zhang R
    Anal Chim Acta; 2019 Mar; 1050():146-153. PubMed ID: 30661582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly selective separation of enantiomers using a chiral porous organic cage.
    Zhang JH; Xie SM; Wang BJ; He PG; Yuan LM
    J Chromatogr A; 2015 Dec; 1426():174-82. PubMed ID: 26632517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chiral porous organic cage for molecular recognition using gas chromatography.
    Xie SM; Zhang JH; Fu N; Wang BJ; Chen L; Yuan LM
    Anal Chim Acta; 2016 Jan; 903():156-63. PubMed ID: 26709309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A homochiral porous organic cage with large cavity and pore windows for the efficient gas chromatography separation of enantiomers and positional isomers.
    Zhang JH; Xie SM; Wang BJ; He PG; Yuan LM
    J Sep Sci; 2018 Mar; 41(6):1385-1394. PubMed ID: 29222874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.
    Cai P; Wu D; Zhao X; Pan Y
    Analyst; 2017 Aug; 142(16):2961-2966. PubMed ID: 28726877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A chiral, porous, organic cage-based, enantioselective potentiometric sensor for 2-aminobutanol.
    Duan AH; Wang BJ; Xie SM; Zhang JH; Yuan LM
    Chirality; 2017 May; 29(5):172-177. PubMed ID: 28379641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly fluorescent metallosalalen-based chiral cage for enantioselective recognition and sensing.
    Dong J; Zhou Y; Zhang F; Cui Y
    Chemistry; 2014 May; 20(21):6455-61. PubMed ID: 24710843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent Gold Nanocluster-Based Sensor Array for Nitrophenol Isomer Discrimination via an Integration of Host-Guest Interaction and Inner Filter Effect.
    Yang H; Lu F; Sun Y; Yuan Z; Lu C
    Anal Chem; 2018 Nov; 90(21):12846-12853. PubMed ID: 30296826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soluble porous organic cages as homogenizers and electron-acceptors for homogenization of heterogeneous alloy nanoparticle catalysts with enhanced catalytic activity.
    Guo H; Liu Y; Dong H; Zong W; Chu K; Li W; Fan Z; He G; Miao YE; Parkin IP; Lai F; Liu T
    Sci Bull (Beijing); 2022 Dec; 67(23):2428-2437. PubMed ID: 36566066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.
    Xie S; Zhang J; Fu N; Wang B; Hu C; Yuan L
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27834837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous organic cage for enantiomeric fluorescence recognition of amino acid and hydroxy acid.
    Liu Y; Jia J; Liao T; Luo J; Zhang X
    Luminescence; 2021 Dec; 36(8):2022-2027. PubMed ID: 34494710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly efficient chiral sensing platform for tryptophan isomers based on a coordination self-assembly.
    Lei P; Zhou Y; Zhang G; Zhang Y; Zhang C; Hong S; Yang Y; Dong C; Shuang S
    Talanta; 2019 Apr; 195():306-312. PubMed ID: 30625547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homochiral Porous Organic Cage with High Selectivity for the Separation of Racemates in Gas Chromatography.
    Zhang JH; Xie SM; Chen L; Wang BJ; He PG; Yuan LM
    Anal Chem; 2015 Aug; 87(15):7817-24. PubMed ID: 26145712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel N-Doped Carbon Dots/β-Cyclodextrin Nanocomposites for Enantioselective Recognition of Tryptophan Enantiomers.
    Xiao Q; Lu S; Huang C; Su W; Huang S
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free non-invasive fluorescent pattern discrimination of thiols and chiral recognition of cysteine enantiomers in biofluids using a bioinspired copolymer-Cu
    Lin ZY; Han XY; Chen ZH; Shi G; Zhang M
    J Mater Chem B; 2018 Nov; 6(42):6877-6883. PubMed ID: 32254704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chirality Discrimination at the Single Molecule Level by Using a Cationic Supermolecule Quasi-Gated Organic Field Effect Transistor.
    Wu Y; Xiao Y; Wang X; Li X; Wang Y
    ACS Sens; 2019 Aug; 4(8):2009-2017. PubMed ID: 31274289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral Assembly of Perovskite Nanocrystals: Sensitive Discrimination of Amino Acid Enantiomers.
    Liu JZ; Chai XY; Huang J; Li RS; Li CM; Ling J; Cao QE; Huang CZ
    Anal Chem; 2024 Mar; 96(10):4282-4289. PubMed ID: 38469640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chiral Ionic Covalent Organic Framework as an Enantioselective Fluorescent Sensor for Phenylalaninol Determination.
    Yue JY; Song LP; Shi YH; Zhang L; Pan ZX; Yang P; Ma Y; Tang B
    Anal Chem; 2023 Jul; 95(29):11078-11084. PubMed ID: 37454333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols.
    Wanderley MM; Wang C; Wu CD; Lin W
    J Am Chem Soc; 2012 Jun; 134(22):9050-3. PubMed ID: 22607498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.