These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30661733)

  • 1. On intrinsic equivalences of the finite helical axis, the instantaneous helical axis, and the SARA approach. A mathematical perspective.
    Ehrig RM; Heller MO
    J Biomech; 2019 Feb; 84():4-10. PubMed ID: 30661733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation and location of the finite helical axis of the equine forelimb joints.
    Kaashoek M; Hobbs SJ; Clayton HM; Aerts P; Nauwelaerts S
    J Morphol; 2019 May; 280(5):712-721. PubMed ID: 30888078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A refined technique to calculate finite helical axes from rigid body trackers.
    McLachlin SD; Ferreira LM; Dunning CE
    J Biomech Eng; 2014 Dec; 136(12):124506. PubMed ID: 25162715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A survey of formal methods for determining functional joint axes.
    Ehrig RM; Taylor WR; Duda GN; Heller MO
    J Biomech; 2007; 40(10):2150-7. PubMed ID: 17169365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional knee axis based on isokinetic dynamometry data: Comparison of two methods, MRI validation, and effect on knee joint kinematics.
    Van Campen A; De Groote F; Bosmans L; Scheys L; Jonkers I; De Schutter J
    J Biomech; 2011 Oct; 44(15):2595-600. PubMed ID: 21924426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instantaneous helical axis estimation from 3-D video data in neck kinematics for whiplash diagnostics.
    Woltring HJ; Long K; Osterbauer PJ; Fuhr AW
    J Biomech; 1994 Dec; 27(12):1415-32. PubMed ID: 7806550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical study of the effects of soft tissue artefacts on functional techniques to define axes of rotation.
    De Rosario H; Page Á; Besa A
    J Biomech; 2017 Sep; 62():60-67. PubMed ID: 28242059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Differences Among Kinematic Parameters for Evaluating the Quality of Intervertebral Motion of the Cervical Spine in Clinical and Experimental Studies: Concepts, Research and Measurement Techniques. A Literature Review.
    Sang D; Cui W; Guo Z; Sang H; Liu B
    World Neurosurg; 2020 Jan; 133():343-357.e1. PubMed ID: 31550538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Helical Axis Data Visualization and Analysis of the Knee Joint Articulation.
    Millán Vaquero RM; Vais A; Dean Lynch S; Rzepecki J; Friese KI; Hurschler C; Wolter FE
    J Biomech Eng; 2016 Sep; 138(9):. PubMed ID: 27367532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of finite helical axis parameters to temporally varying realistic motion utilizing an idealized knee model.
    Johnson TS; Andriacchi TP; Erdman AG
    Proc Inst Mech Eng H; 2004; 218(2):89-100. PubMed ID: 15116896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SCoRE residual: a quality index to assess the accuracy of joint estimations.
    Ehrig RM; Heller MO; Kratzenstein S; Duda GN; Trepczynski A; Taylor WR
    J Biomech; 2011 Apr; 44(7):1400-4. PubMed ID: 21334628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodological analysis of finite helical axis behavior in cervical kinematics.
    Cescon C; Cattrysse E; Barbero M
    J Electromyogr Kinesiol; 2014 Oct; 24(5):628-35. PubMed ID: 24916306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intuitive assessment of modeled lumbar spinal motion by clustering and visualization of finite helical axes.
    Rockenfeller R; Hammer M; Riede JM; Schmitt S; Lawonn K
    Comput Biol Med; 2021 Aug; 135():104528. PubMed ID: 34166878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the alpha shape to quantify finite helical axis dispersion during simulated spine movements.
    McLachlin SD; Bailey CS; Dunning CE
    J Biomech; 2016 Jan; 49(1):112-118. PubMed ID: 26653673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of functional methods of joint centre determination for quasi-planar movement.
    Meng L; Childs C; Buis A
    PLoS One; 2019; 14(1):e0210807. PubMed ID: 30653613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the abduction-adduction axis of rotation at the human knee: helical axis representation.
    Dhaher YY; Francis MJ
    J Orthop Res; 2006 Dec; 24(12):2187-200. PubMed ID: 16944475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics.
    Woltring HJ; Huiskes R; de Lange A; Veldpaus FE
    J Biomech; 1985; 18(5):379-89. PubMed ID: 4008508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of planar constraint on the definition of the wrist axes of rotation.
    Akinnola OO; Vardakastani V; Kedgley AE
    J Biomech; 2020 Dec; 113():110083. PubMed ID: 33152636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.