BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 30662487)

  • 21. Affecting Effects on Affect: The Impact of Protocol Permutations on Affective Responses to Sprint Interval Exercise; A Systematic Review and Meta-Analysis of Pooled Individual Participant Data.
    Metcalfe RS; Williams S; Fernandes GS; Astorino TA; Stork MJ; Phillips SM; Niven A; Vollaard NBJ
    Front Sports Act Living; 2022; 4():815555. PubMed ID: 35252858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of sprint interval training on maximal oxygen uptake in athletes: a meta-analysis.
    Yang Q; Li D; Xie H; Ji H; Lu J; He J; Qin Z; Sun J
    J Sports Med Phys Fitness; 2021 Oct; ():. PubMed ID: 34609099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationships between aerobic fitness, power maintenance and oxygen consumption during intense intermittent exercise.
    Tomlin DL; Wenger HA
    J Sci Med Sport; 2002 Sep; 5(3):194-203. PubMed ID: 12413036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of time and work:rest ratio matched sprint interval training programmes on performance: A randomised controlled trial.
    Lloyd Jones MC; Morris MG; Jakeman JR
    J Sci Med Sport; 2017 Nov; 20(11):1034-1038. PubMed ID: 28410999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research into the Health Benefits of Sprint Interval Training Should Focus on Protocols with Fewer and Shorter Sprints.
    Vollaard NBJ; Metcalfe RS
    Sports Med; 2017 Dec; 47(12):2443-2451. PubMed ID: 28391489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effects of Recovery Duration During High-Intensity Interval Exercise on Time Spent at High Rates of Oxygen Consumption, Oxygen Kinetics, and Blood Lactate.
    Smilios I; Myrkos A; Zafeiridis A; Toubekis A; Spassis A; Tokmakidis SP
    J Strength Cond Res; 2018 Aug; 32(8):2183-2189. PubMed ID: 28301436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sprint interval training effects on aerobic capacity: a systematic review and meta-analysis.
    Gist NH; Fedewa MV; Dishman RK; Cureton KJ
    Sports Med; 2014 Feb; 44(2):269-79. PubMed ID: 24129784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological and performance adaptations to high-intensity interval training.
    Gibala MJ; Jones AM
    Nestle Nutr Inst Workshop Ser; 2013; 76():51-60. PubMed ID: 23899754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis.
    Buchheit M; Laursen PB
    Sports Med; 2013 May; 43(5):313-38. PubMed ID: 23539308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physiological responses to an acute bout of sprint interval cycling.
    Freese EC; Gist NH; Cureton KJ
    J Strength Cond Res; 2013 Oct; 27(10):2768-73. PubMed ID: 23302749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extremely short duration high-intensity training substantially improves endurance performance in triathletes.
    Jakeman J; Adamson S; Babraj J
    Appl Physiol Nutr Metab; 2012 Oct; 37(5):976-81. PubMed ID: 22857018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise.
    Wakefield BR; Glaister M
    J Strength Cond Res; 2009 Dec; 23(9):2548-54. PubMed ID: 19910820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Teleoanticipation in all-out short-duration cycling.
    Wittekind AL; Micklewright D; Beneke R
    Br J Sports Med; 2011 Feb; 45(2):114-9. PubMed ID: 19679576
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of priming exercise on pulmonary O2 uptake kinetics during transitions to high-intensity exercise from an elevated baseline.
    DiMenna FJ; Wilkerson DP; Burnley M; Jones AM
    J Appl Physiol (1985); 2008 Aug; 105(2):538-46. PubMed ID: 18511522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners?: empirical research findings, current opinions, physiological rationale and practical recommendations.
    Midgley AW; McNaughton LR; Wilkinson M
    Sports Med; 2006; 36(2):117-32. PubMed ID: 16464121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of recovery duration on multiple sprint cycling performance.
    Glaister M; Stone MH; Stewart AM; Hughes M; Moir GL
    J Strength Cond Res; 2005 Nov; 19(4):831-7. PubMed ID: 16331865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of training on lactate/ventilatory thresholds: a meta-analysis.
    Londeree BR
    Med Sci Sports Exerc; 1997 Jun; 29(6):837-43. PubMed ID: 9219214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concept of an extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychophysiological feedback.
    Ulmer HV
    Experientia; 1996 May; 52(5):416-20. PubMed ID: 8641377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man.
    Bogdanis GC; Nevill ME; Boobis LH; Lakomy HK; Nevill AM
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):467-80. PubMed ID: 7714837
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man.
    Harris RC; Edwards RH; Hultman E; Nordesjö LO; Nylind B; Sahlin K
    Pflugers Arch; 1976 Dec; 367(2):137-42. PubMed ID: 1034909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.