These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30662503)

  • 1. Age-specific affective responses and self-efficacy to acute high-intensity interval training and continuous exercise in insufficiently active young and middle-aged men.
    Poon ET; Sheridan S; Chung AP; Wong SH
    J Exerc Sci Fit; 2018 Dec; 16(3):106-111. PubMed ID: 30662503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does Exercise Modality Matter Affectively? Contrasting Type and Sequence of Moderate-Intensity Continuous Training Versus High-Intensity Interval Training in a Randomized Within-Subject Study.
    Dierkes K; Rösel I; Giel KE; Thiel A; Sudeck G
    J Sports Sci Med; 2023 Mar; 22(1):84-97. PubMed ID: 36876187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-Exercise Appetite and Ad Libitum Energy Intake in Response to High-Intensity Interval Training versus Moderate- or Vigorous-Intensity Continuous Training among Physically Inactive Middle-Aged Adults.
    Poon ET; Sun FH; Chung AP; Wong SH
    Nutrients; 2018 Oct; 10(10):. PubMed ID: 30279345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the Affective Responses to Continuous Training and High-Intensity Interval Training Protocols: Application of the Dual-Mode Model.
    Alicea SK; Parrott AD; Manos TM; Kwon YS
    J Strength Cond Res; 2021 Nov; 35(11):3069-3075. PubMed ID: 31977834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Six high-intensity interval training sessions over 5 days increases maximal oxygen uptake, endurance capacity, and sub-maximal exercise fat oxidation as much as 6 high-intensity interval training sessions over 2 weeks.
    Atakan MM; Güzel Y; Bulut S; Koşar ŞN; McConell GK; Turnagöl HH
    J Sport Health Sci; 2021 Jul; 10(4):478-487. PubMed ID: 32565243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing the Interaction of Exercise Volume and Metformin to Induce a Clinically Significant Reduction in Metabolic Syndrome Severity: A Randomised Trial.
    Ramos JS; Dalleck LC; Keith CE; Fennell M; Lee Z; Drummond C; Keating SE; Fassett RG; Coombes JS
    Int J Environ Res Public Health; 2020 May; 17(10):. PubMed ID: 32456272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of high-intensity interval training and moderate-intensity continuous training on resting and postexercise cardiac troponin T concentration.
    Nie J; Zhang H; Kong Z; George K; Little JP; Tong TK; Li F; Shi Q
    Exp Physiol; 2018 Mar; 103(3):370-380. PubMed ID: 29247498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiorespiratory and perceptual responses of two interval training and a continuous training protocol in healthy young men.
    Naves JPA; Rebelo ACS; Silva LRBE; Silva MS; Ramirez-Campillo R; Ramírez-Vélez R; Gentil P
    Eur J Sport Sci; 2019 Jun; 19(5):653-660. PubMed ID: 30496024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Psychological and Behavioral Responses to Interval and Continuous Exercise.
    Stork MJ; Gibala MJ; Martin Ginis KA
    Med Sci Sports Exerc; 2018 Oct; 50(10):2110-2121. PubMed ID: 29771824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term and Long-term Feasibility, Safety, and Efficacy of High-Intensity Interval Training in Cardiac Rehabilitation: The FITR Heart Study Randomized Clinical Trial.
    Taylor JL; Holland DJ; Keating SE; Leveritt MD; Gomersall SR; Rowlands AV; Bailey TG; Coombes JS
    JAMA Cardiol; 2020 Dec; 5(12):1382-1389. PubMed ID: 32876655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of self-tailored high-intensity interval training versus moderate-intensity continuous exercise on cardiorespiratory fitness after myocardial infarction: A randomised controlled trial.
    Marcin T; Trachsel LD; Dysli M; Schmid JP; Eser P; Wilhelm M
    Ann Phys Rehabil Med; 2022 Jan; 65(1):101490. PubMed ID: 33450366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Acute Physiological and Psychological Responses Between Moderate-Intensity Continuous Exercise and Three Regimes of High-Intensity Interval Training.
    Olney N; Wertz T; LaPorta Z; Mora A; Serbas J; Astorino TA
    J Strength Cond Res; 2018 Aug; 32(8):2130-2138. PubMed ID: 28737586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Within-session responses to high-intensity interval training in spinal cord injury.
    Astorino TA; Thum JS
    Disabil Rehabil; 2018 Feb; 40(4):444-449. PubMed ID: 27930890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of high-intensity interval training compared to moderate-intensity continuous training on maximal oxygen consumption and blood pressure in healthy men: A randomized controlled trial.
    Arboleda-Serna VH; Feito Y; Patiño-Villada FA; Vargas-Romero AV; Arango-Vélez EF
    Biomedica; 2019 Sep; 39(3):524-536. PubMed ID: 31584766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute effects of high-intensity interval, resistance or combined exercise protocols on testosterone - cortisol responses in inactive overweight individuals.
    Velasco-Orjuela GP; Domínguez-Sanchéz MA; Hernández E; Correa-Bautista JE; Triana-Reina HR; García-Hermoso A; Peña-Ibagon JC; Izquierdo M; Cadore EL; Hackney AC; Ramírez-Vélez R
    Physiol Behav; 2018 Oct; 194():401-409. PubMed ID: 29940266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Affective and enjoyment responses to 12 weeks of high intensity interval training and moderate continuous training in adults with Crohn's disease.
    Bottoms L; Leighton D; Carpenter R; Anderson S; Langmead L; Ramage J; Faulkner J; Coleman E; Fairhurst C; Seed M; Tew G
    PLoS One; 2019; 14(9):e0222060. PubMed ID: 31539378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiorespiratory fitness and accelerometer-determined physical activity following one year of free-living high-intensity interval training and moderate-intensity continuous training: a randomized trial.
    Jung ME; Locke SR; Bourne JE; Beauchamp MR; Lee T; Singer J; MacPherson M; Barry J; Jones C; Little JP
    Int J Behav Nutr Phys Act; 2020 Feb; 17(1):25. PubMed ID: 32102667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affective responses to different prescriptions of high-intensity interval exercise in hypertensive patients.
    Lins-Filho OL; Ritti-Dias RM; Santos TM; Silva JF; Leite GF; Gusmão LS; Ferreira DK
    J Sports Med Phys Fitness; 2020 Feb; 60(2):308-313. PubMed ID: 31958002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Affective responses to high-intensity interval training with continuous and respite music.
    Jones L; Stork MJ; Oliver LS
    J Sports Sci; 2020 Dec; 38(24):2803-2810. PubMed ID: 32776861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exercise Training Intensity and the Fitness-Fatness Index in Adults with Metabolic Syndrome: A Randomized Trial.
    Ramos JS; Dalleck LC; Fennell M; Martini A; Welmans T; Stennett R; Keating SE; Fassett RG; Coombes JS
    Sports Med Open; 2021 Dec; 7(1):100. PubMed ID: 34951682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.