These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 30662600)
1. Extracellular matrix deposited by Wharton's jelly mesenchymal stem cells enhances cell expansion and tissue specific lineage potential. Wang Y; Jiang C; Cong S; Guo C; Yan Z Am J Transl Res; 2018; 10(11):3465-3480. PubMed ID: 30662600 [TBL] [Abstract][Full Text] [Related]
2. Modulation of in vitro microenvironment facilitates synovium-derived stem cell-based nucleus pulposus tissue regeneration. Pei M; Shoukry M; Li J; Daffner SD; France JC; Emery SE Spine (Phila Pa 1976); 2012 Aug; 37(18):1538-47. PubMed ID: 22391443 [TBL] [Abstract][Full Text] [Related]
3. Delineation of in vitro chondrogenesis of human synovial stem cells following preconditioning using decellularized matrix. Zhang Y; Li J; Davis ME; Pei M Acta Biomater; 2015 Jul; 20():39-50. PubMed ID: 25861949 [TBL] [Abstract][Full Text] [Related]
4. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells. Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753 [TBL] [Abstract][Full Text] [Related]
5. Role of lineage-specific matrix in stem cell chondrogenesis. Li J; Narayanan K; Zhang Y; Hill RC; He F; Hansen KC; Pei M Biomaterials; 2020 Feb; 231():119681. PubMed ID: 31864016 [TBL] [Abstract][Full Text] [Related]
6. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization. Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792 [TBL] [Abstract][Full Text] [Related]
7. Chondrogenic priming of human fetal synovium-derived stem cells in an adult stem cell matrix microenvironment. Li J; He F; Pei M Genes Dis; 2015 Dec; 2(4):337-346. PubMed ID: 30258873 [TBL] [Abstract][Full Text] [Related]
8. The matrix microenvironment influences but does not dominate tissue-specific stem cell lineage differentiation. Pei YA; Mikaeiliagah E; Wang B; Zhang X; Pei M Mater Today Bio; 2023 Dec; 23():100805. PubMed ID: 37766896 [TBL] [Abstract][Full Text] [Related]
9. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity. Bai J; Hu Y; Wang YR; Liu LF; Chen J; Su SP; Wang Y J Geriatr Cardiol; 2012 Jun; 9(2):166-71. PubMed ID: 22916064 [TBL] [Abstract][Full Text] [Related]
10. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Pei M; He F; Li J; Tidwell JE; Jones AC; McDonough EB Tissue Eng Part A; 2013 May; 19(9-10):1144-54. PubMed ID: 23216161 [TBL] [Abstract][Full Text] [Related]
11. In vitro chondrogenesis of Wharton's jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Aleksander-Konert E; Paduszyński P; Zajdel A; Dzierżewicz Z; Wilczok A Cell Mol Biol Lett; 2016; 21():11. PubMed ID: 28536614 [TBL] [Abstract][Full Text] [Related]
12. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells. Corotchi MC; Popa MA; Remes A; Sima LE; Gussi I; Lupu Plesu M Stem Cell Res Ther; 2013 Jul; 4(4):81. PubMed ID: 23845279 [TBL] [Abstract][Full Text] [Related]
13. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration. Pu L; Meng M; Wu J; Zhang J; Hou Z; Gao H; Xu H; Liu B; Tang W; Jiang L; Li Y Stem Cell Res Ther; 2017 Mar; 8(1):72. PubMed ID: 28320452 [TBL] [Abstract][Full Text] [Related]
14. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells. Tantrawatpan C; Manochantr S; Kheolamai P; U-Pratya Y; Supokawej A; Issaragrisil S J Med Assoc Thai; 2013 Sep; 96(9):1208-17. PubMed ID: 24163998 [TBL] [Abstract][Full Text] [Related]
15. Osteogenic differentiation of Wharton's jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism. Beiki B; Zeynali B; Taghiabadi E; Seyedjafari E; Kehtari M Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1032-S1042. PubMed ID: 30449193 [TBL] [Abstract][Full Text] [Related]
16. Chondrogenic induction of mesenchymal stromal/stem cells from Wharton's jelly embedded in alginate hydrogel and without added growth factor: an alternative stem cell source for cartilage tissue engineering. Reppel L; Schiavi J; Charif N; Leger L; Yu H; Pinzano A; Henrionnet C; Stoltz JF; Bensoussan D; Huselstein C Stem Cell Res Ther; 2015 Dec; 6():260. PubMed ID: 26718750 [TBL] [Abstract][Full Text] [Related]
17. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord. Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911 [TBL] [Abstract][Full Text] [Related]
18. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]