These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 30663266)
1. Canagliflozin, a sodium-glucose cotransporter 2 inhibitor, normalizes renal susceptibility to type 1 cardiorenal syndrome through reduction of renal oxidative stress in diabetic rats. Kimura Y; Kuno A; Tanno M; Sato T; Ohno K; Shibata S; Nakata K; Sugawara H; Abe K; Igaki Y; Yano T; Miki T; Miura T J Diabetes Investig; 2019 Jul; 10(4):933-946. PubMed ID: 30663266 [TBL] [Abstract][Full Text] [Related]
2. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats. Ohno K; Kuno A; Murase H; Muratsubaki S; Miki T; Tanno M; Yano T; Ishikawa S; Yamashita T; Miura T Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1130-H1142. PubMed ID: 28822965 [TBL] [Abstract][Full Text] [Related]
3. Empagliflozin, an SGLT2 Inhibitor, Reduced the Mortality Rate after Acute Myocardial Infarction with Modification of Cardiac Metabolomes and Antioxidants in Diabetic Rats. Oshima H; Miki T; Kuno A; Mizuno M; Sato T; Tanno M; Yano T; Nakata K; Kimura Y; Abe K; Ohwada W; Miura T J Pharmacol Exp Ther; 2019 Mar; 368(3):524-534. PubMed ID: 30552292 [TBL] [Abstract][Full Text] [Related]
4. Empagliflozin attenuates acute kidney injury after myocardial infarction in diabetic rats. Kuno A; Kimura Y; Mizuno M; Oshima H; Sato T; Moniwa N; Tanaka M; Yano T; Tanno M; Miki T; Miura T Sci Rep; 2020 Apr; 10(1):7238. PubMed ID: 32350374 [TBL] [Abstract][Full Text] [Related]
5. Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts. Mizuno M; Kuno A; Yano T; Miki T; Oshima H; Sato T; Nakata K; Kimura Y; Tanno M; Miura T Physiol Rep; 2018 Jun; 6(12):e13741. PubMed ID: 29932506 [TBL] [Abstract][Full Text] [Related]
6. Effects of heat-processed ginseng and its active component ginsenoside 20(S)-Rg3 on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats. Kang KS; Yamabe N; Kim HY; Park JH; Yokozawa T Biol Pharm Bull; 2010; 33(6):1077-81. PubMed ID: 20522983 [TBL] [Abstract][Full Text] [Related]
7. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes. Shin SJ; Chung S; Kim SJ; Lee EM; Yoo YH; Kim JW; Ahn YB; Kim ES; Moon SD; Kim MJ; Ko SH PLoS One; 2016; 11(11):e0165703. PubMed ID: 27802313 [TBL] [Abstract][Full Text] [Related]
8. Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, ameliorates the development of liver fibrosis in diabetic Otsuka Long-Evans Tokushima fatty rats. Nishimura N; Kitade M; Noguchi R; Namisaki T; Moriya K; Takeda K; Okura Y; Aihara Y; Douhara A; Kawaratani H; Asada K; Yoshiji H J Gastroenterol; 2016 Dec; 51(12):1141-1149. PubMed ID: 27025708 [TBL] [Abstract][Full Text] [Related]
9. SGLT2 inhibitor empagliflozin monotherapy alleviates renal oxidative stress in albino Wistar diabetic rats after myocardial infarction induction. Ahmed AS; Mona MM; Abdel-Kareem MA; Elsisy RA Biomed Pharmacother; 2021 Jul; 139():111624. PubMed ID: 33915503 [TBL] [Abstract][Full Text] [Related]
10. Vascular proliferation and transforming growth factor-beta expression in pre- and early stage of diabetes mellitus in Otsuka Long-Evans Tokushima fatty rats. Hosomi N; Noma T; Ohyama H; Takahashi T; Kohno M Atherosclerosis; 2002 May; 162(1):69-76. PubMed ID: 11947899 [TBL] [Abstract][Full Text] [Related]
11. Effects of NADPH oxidase inhibitor on diabetic nephropathy in OLETF rats: the role of reducing oxidative stress in its protective property. Nam SM; Lee MY; Koh JH; Park JH; Shin JY; Shin YG; Koh SB; Lee EY; Chung CH Diabetes Res Clin Pract; 2009 Feb; 83(2):176-82. PubMed ID: 19111363 [TBL] [Abstract][Full Text] [Related]
12. Effect of AOB, a fermented-grain food supplement, on oxidative stress in type 2 diabetic rats. Minamiyama Y; Takemura S; Tsukioka T; Shinkawa H; Kobayashi F; Nishikawa Y; Kodai S; Mizuguchi S; Suehiro S; Okada S Biofactors; 2007; 30(2):91-104. PubMed ID: 18356581 [TBL] [Abstract][Full Text] [Related]
13. Ultrastructural changes of cornea after ethanol ingestion in Otsuka Long-Evans Tokushima fatty (OLETF) and Long-Evans Tokushima Otsuka (LETO) rats. Kim EC; Kim DJ; Lee SS; Kim MS Graefes Arch Clin Exp Ophthalmol; 2010 Oct; 248(10):1457-66. PubMed ID: 20582705 [TBL] [Abstract][Full Text] [Related]
14. Effect of Anagliptin on Vascular Injury in the Femoral Artery of Type 2 Diabetic Rats. Noda M; Kikuchi C; Hori E; Iwao T; Nagami C; Takeuchi M; Matsunaga T Biol Pharm Bull; 2024; 47(1):204-212. PubMed ID: 38246646 [TBL] [Abstract][Full Text] [Related]
15. Effect of enalapril on diabetic nephropathy in OLETF rats: the role of an anti-oxidative action in its protective properties. Sugimoto K; Tsuruoka S; Fujimura A Clin Exp Pharmacol Physiol; 2001 Oct; 28(10):826-30. PubMed ID: 11553023 [TBL] [Abstract][Full Text] [Related]
16. Mild hyperbaric oxygen inhibits the growth-related decline in skeletal muscle oxidative capacity and prevents hyperglycemia in rats with type 2 diabetes mellitus. Nagatomo F; Takemura A; Roy RR; Fujino H; Kondo H; Ishihara A J Diabetes; 2018 Sep; 10(9):753-763. PubMed ID: 29633563 [TBL] [Abstract][Full Text] [Related]
17. Abnormal renal structural alterations during the development of diabetes mellitus in Otsuka Long-Evans Tokushima Fatty rats. Koike T; Tomoda F; Kinuno H; Inoue H; Takata M Acta Physiol Scand; 2005 May; 184(1):73-81. PubMed ID: 15847646 [TBL] [Abstract][Full Text] [Related]
18. Glucose transporter levels in a male spontaneous non-insulin-dependent diabetes mellitus rat of the Otsuka Long-Evans Tokushima Fatty strain. Toide K; Man ZW; Asahi Y; Sato T; Nakayama N; Noma Y; Oka Y; Shima K Diabetes Res Clin Pract; 1997 Dec; 38(3):151-60. PubMed ID: 9483380 [TBL] [Abstract][Full Text] [Related]