BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 30663302)

  • 1. Quantitative Lipid Droplet Proteomics Reveals Mycobacterium tuberculosis Induced Alterations in Macrophage Response to Infection.
    Menon D; Singh K; Pinto SM; Nandy A; Jaisinghani N; Kutum R; Dash D; Prasad TSK; Gandotra S
    ACS Infect Dis; 2019 Apr; 5(4):559-569. PubMed ID: 30663302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense.
    Knight M; Braverman J; Asfaha K; Gronert K; Stanley S
    PLoS Pathog; 2018 Jan; 14(1):e1006874. PubMed ID: 29370315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid droplets and the transcriptome of Mycobacterium tuberculosis from direct sputa: a literature review.
    Mekonnen D; Derbie A; Mihret A; Yimer SA; Tønjum T; Gelaw B; Nibret E; Munshae A; Waddell SJ; Aseffa A
    Lipids Health Dis; 2021 Oct; 20(1):129. PubMed ID: 34602073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of host regulators of Mycobacterium tuberculosis phenotypes uncovers a role for the MMGT1-GPR156 lipid droplet axis in persistence.
    Kalam H; Chou CH; Kadoki M; Graham DB; Deguine J; Hung DT; Xavier RJ
    Cell Host Microbe; 2023 Jun; 31(6):978-992.e5. PubMed ID: 37269834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of Mycobacterium Proteins with Lipid Droplets.
    Armstrong RM; Carter DC; Atkinson SN; Terhune SS; Zahrt TC
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29760207
    [No Abstract]   [Full Text] [Related]  

  • 6. The impact of
    Chen Z; Kong X; Ma Q; Chen J; Zeng Y; Liu H; Wang X; Lu S
    Front Immunol; 2024; 15():1402024. PubMed ID: 38873598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid droplets as multifunctional organelles related to the mechanism of evasion during mycobacterial infection.
    de Almeida PE; Pereira de Sousa NM; Rampinelli PG; Silva RVS; Correa JR; D'Avila H
    Front Cell Infect Microbiol; 2023; 13():1102643. PubMed ID: 36909724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fasting and refeeding induces changes in the mouse hepatic lipid droplet proteome.
    Kramer DA; Quiroga AD; Lian J; Fahlman RP; Lehner R
    J Proteomics; 2018 Jun; 181():213-224. PubMed ID: 29698803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation.
    Genoula M; Marín Franco JL; Maio M; Dolotowicz B; Ferreyra M; Milillo MA; Mascarau R; Moraña EJ; Palmero D; Matteo M; Fuentes F; López B; Barrionuevo P; Neyrolles O; Cougoule C; Lugo-Villarino G; Vérollet C; Sasiain MDC; Balboa L
    PLoS Pathog; 2020 Oct; 16(10):e1008929. PubMed ID: 33002063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation.
    Bersuker K; Olzmann JA
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Oct; 1862(10 Pt B):1166-1177. PubMed ID: 28627435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets.
    Barisch C; Soldati T
    Biochimie; 2017 Oct; 141():54-61. PubMed ID: 28587792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of Lipid Droplets for Protein and Lipid Analysis.
    Horn PJ; Chapman KD; Ischebeck T
    Methods Mol Biol; 2021; 2295():295-320. PubMed ID: 34047983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis Infection Manipulates the Glycosylation Machinery and the N-Glycoproteome of Human Macrophages and Their Microparticles.
    Hare NJ; Lee LY; Loke I; Britton WJ; Saunders BM; Thaysen-Andersen M
    J Proteome Res; 2017 Jan; 16(1):247-263. PubMed ID: 27760463
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Woo M; Wood C; Kwon D; Park KP; Fejer G; Delorme V
    Front Immunol; 2018; 9():438. PubMed ID: 29593716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics Analysis of Lipid Droplets from the Oleaginous Alga Chromochloris zofingiensis Reveals Novel Proteins for Lipid Metabolism.
    Wang X; Wei H; Mao X; Liu J
    Genomics Proteomics Bioinformatics; 2019 Jun; 17(3):260-272. PubMed ID: 31494267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics of
    Hoffmann E; Machelart A; Song OR; Brodin P
    Front Immunol; 2018; 9():86. PubMed ID: 29441067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential proteomics profiling identifies LDPs and biological functions in high-fat diet-induced fatty livers.
    Liu M; Ge R; Liu W; Liu Q; Xia X; Lai M; Liang L; Li C; Song L; Zhen B; Qin J; Ding C
    J Lipid Res; 2017 Apr; 58(4):681-694. PubMed ID: 28179399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection.
    Cumming BM; Rahman MA; Lamprecht DA; Rohde KH; Saini V; Adamson JH; Russell DG; Steyn AJC
    PLoS Pathog; 2017 May; 13(5):e1006389. PubMed ID: 28542477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization of Human Monocyte-Derived Cells With Vitamin D Promotes Control of
    Rao Muvva J; Parasa VR; Lerm M; Svensson M; Brighenti S
    Front Immunol; 2019; 10():3157. PubMed ID: 32038652
    [No Abstract]   [Full Text] [Related]  

  • 20. Mycobacterium tuberculosis-infected human macrophages exhibit enhanced cellular adhesion with increased expression of LFA-1 and ICAM-1 and reduced expression and/or function of complement receptors, FcgammaRII and the mannose receptor.
    DesJardin LE; Kaufman TM; Potts B; Kutzbach B; Yi H; Schlesinger LS
    Microbiology (Reading); 2002 Oct; 148(Pt 10):3161-3171. PubMed ID: 12368450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.