BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30663430)

  • 1. Cytotoxicity, dose-enhancement and radiosensitization of glioblastoma cells with rare earth nanoparticles.
    Lu VM; Crawshay-Williams F; White B; Elliot A; Hill MA; Townley HE
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):132-143. PubMed ID: 30663430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiosensitivity enhancement of Fe
    Zhang X; Liu Z; Lou Z; Chen F; Chang S; Miao Y; Zhou Z; Hu X; Feng J; Ding Q; Liu P; Gu N; Zhang H
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):975-984. PubMed ID: 29609505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma.
    Lu VM; McDonald KL; Townley HE
    Nanomedicine (Lond); 2017 Oct; 12(19):2389-2401. PubMed ID: 28868972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs.
    Wu H; Lin J; Liu P; Huang Z; Zhao P; Jin H; Ma J; Wen L; Gu N
    Biomaterials; 2016 Sep; 101():1-9. PubMed ID: 27254247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiosensitizing Effect of Dextran-Coated Iron Oxide Nanoparticles on Malignant Glioma Cells.
    Tran NH; Ryzhov V; Volnitskiy A; Amerkanov D; Pack F; Golubev AM; Arutyunyan A; Spitsyna A; Burdakov V; Lebedev D; Konevega AL; Shtam T; Marchenko Y
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of platinum-coexisting dopamine with X-ray irradiation upon human glioblastoma cell proliferation.
    Kato S
    Hum Cell; 2021 Nov; 34(6):1653-1661. PubMed ID: 34374034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme.
    Choi J; Kim G; Cho SB; Im HJ
    J Nanobiotechnology; 2020 Sep; 18(1):122. PubMed ID: 32883290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: a proof-of-concept.
    Mirjolet C; Papa AL; Créhange G; Raguin O; Seignez C; Paul C; Truc G; Maingon P; Millot N
    Radiother Oncol; 2013 Jul; 108(1):136-42. PubMed ID: 23647757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.
    Townley HE; Rapa E; Wakefield G; Dobson PJ
    Nanomedicine; 2012 May; 8(4):526-36. PubMed ID: 21864490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytotoxic lanthanum oxide nanoparticles sensitize glioblastoma cells to radiation therapy and temozolomide: an in vitro rationale for translational studies.
    Lu VM; Jue TR; McDonald KL
    Sci Rep; 2020 Oct; 10(1):18156. PubMed ID: 33097778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Strategies for Nanoparticle-Based Radiosensitization in Glioblastoma.
    Ruiz-Garcia H; Ramirez-Loera C; Malouff TD; Seneviratne DS; Palmer JD; Trifiletti DM
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Megavoltage Radiosensitization of Gold Nanoparticles on a Glioblastoma Cancer Cell Line Using a Clinical Platform.
    Kazmi F; Vallis KA; Vellayappan BA; Bandla A; Yukun D; Carlisle R
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of dextran-coated iron oxide nanoparticles in enhancing the radiosensitivity of cancerous cells in radiotherapy with high-energy electron beams.
    Rezaei M; Khoshgard K; Hosseinzadeh L; Haghparast A; Eivazi MT
    J Cancer Res Ther; 2019; 15(6):1352-1358. PubMed ID: 31898672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles.
    Chu SH; Karri S; Ma YB; Feng DF; Li ZQ
    Neuro Oncol; 2013 Jul; 15(7):880-90. PubMed ID: 23519742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High inflammogenic potential of rare earth oxide nanoparticles: the New Hazardous Entity.
    Han Y; Lee DK; Kim SH; Lee S; Jeon S; Cho WS
    Nanotoxicology; 2018 Sep; 12(7):712-728. PubMed ID: 29848123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lack of interferon beta-induced radiosensitization in four out of five human glioblastoma cell lines.
    Schmidberger H; Rave-Fränk M; Lehmann J J; Weiss E; Gerl L; Dettmer N; Glomme S; Hess CF
    Int J Radiat Oncol Biol Phys; 2003 Apr; 55(5):1348-57. PubMed ID: 12654447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing inflammasome.
    Li R; Ji Z; Qin H; Kang X; Sun B; Wang M; Chang CH; Wang X; Zhang H; Zou H; Nel AE; Xia T
    ACS Nano; 2014 Oct; 8(10):10280-92. PubMed ID: 25251502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-II fluorescence imaging of orthotopic glioblastoma.
    Liu Z; Ren F; Zhang H; Yuan Q; Jiang Z; Liu H; Sun Q; Li Z
    Biomaterials; 2019 Oct; 219():119364. PubMed ID: 31352311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Gold Nanoparticle Radiosensitization on Plasmid DNA Damage Induced by High-Dose-Rate Brachytherapy.
    Yogo K; Misawa M; Shimizu M; Shimizu H; Kitagawa T; Hirayama R; Ishiyama H; Furukawa T; Yasuda H
    Int J Nanomedicine; 2021; 16():359-370. PubMed ID: 33469290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma.
    Liu P; Jin H; Guo Z; Ma J; Zhao J; Li D; Wu H; Gu N
    Int J Nanomedicine; 2016; 11():5003-5014. PubMed ID: 27757033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.