These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 30663557)
1. Bromotryptophan and its Analogs in Peptides from Marine Animals. Jimenez EC Protein Pept Lett; 2019; 26(4):251-260. PubMed ID: 30663557 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a novel Conus bandanus conopeptide belonging to the M-superfamily containing bromotryptophan. Nguyen B; Caer JP; Mourier G; Thai R; Lamthanh H; Servent D; Benoit E; Molgó J Mar Drugs; 2014 Jun; 12(6):3449-65. PubMed ID: 24905483 [TBL] [Abstract][Full Text] [Related]
3. Mass spectrometric identification of bromotryptophan containing conotoxin sequences from the venom of C. amadis. Vijayasarathy M; Balaram P Toxicon; 2018 Mar; 144():68-74. PubMed ID: 29447903 [TBL] [Abstract][Full Text] [Related]
4. A novel conotoxin from Conus delessertii with posttranslationally modified lysine residues. Aguilar MB; López-Vera E; Ortiz E; Becerril B; Possani LD; Olivera BM; Heimer de la Cotera EP Biochemistry; 2005 Aug; 44(33):11130-6. PubMed ID: 16101297 [TBL] [Abstract][Full Text] [Related]
5. De novo sequencing and disulfide mapping of a bromotryptophan-containing conotoxin by Fourier transform ion cyclotron resonance mass spectrometry. Nair SS; Nilsson CL; Emmett MR; Schaub TM; Gowd KH; Thakur SS; Krishnan KS; Balaram P; Marshall AG Anal Chem; 2006 Dec; 78(23):8082-8. PubMed ID: 17134143 [TBL] [Abstract][Full Text] [Related]
6. Multiple 6-bromotryptophan residues in a sleep-inducing peptide. Jimenez EC; Watkins M; Olivera BM Biochemistry; 2004 Sep; 43(38):12343-8. PubMed ID: 15379573 [TBL] [Abstract][Full Text] [Related]
7. A novel post-translational modification involving bromination of tryptophan. Identification of the residue, L-6-bromotryptophan, in peptides from Conus imperialis and Conus radiatus venom. Craig AG; Jimenez EC; Dykert J; Nielsen DB; Gulyas J; Abogadie FC; Porter J; Rivier JE; Cruz LJ; Olivera BM; McIntosh JM J Biol Chem; 1997 Feb; 272(8):4689-98. PubMed ID: 9030520 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of post-translational modified amino acids as an approach to increase both chemical and biological diversity of conotoxins and conopeptides. Espiritu MJ; Cabalteja CC; Sugai CK; Bingham JP Amino Acids; 2014 Jan; 46(1):125-51. PubMed ID: 24221351 [TBL] [Abstract][Full Text] [Related]
9. Photoaffinity labelling of cyanomethaemoglobin with derivatives of tryptophan and 5-bromotryptophan. Li M; Lin Z; Johnson ME Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):251-60. PubMed ID: 7755572 [TBL] [Abstract][Full Text] [Related]
10. Morulin Pm: a modified polypeptide containing TOPA and 6-bromotryptophan from the morula cells of the ascidian, Phallusia mammillata. Taylor SW; Kammerer B; Nicholson GJ; Pusecker K; Walk T; Bayer E; Scippa S; de Vincentiis M Arch Biochem Biophys; 1997 Dec; 348(2):278-88. PubMed ID: 9434739 [TBL] [Abstract][Full Text] [Related]
11. Engineering of RiPP pathways for the production of artificial peptides bearing various non-proteinogenic structures. Goto Y; Suga H Curr Opin Chem Biol; 2018 Oct; 46():82-90. PubMed ID: 29957445 [TBL] [Abstract][Full Text] [Related]
12. The synthesis of dehydrotryptophan and dehydrotryptophan-containing peptides. Kaur H; Heapy AM; Brimble MA Org Biomol Chem; 2011 Sep; 9(17):5897-907. PubMed ID: 21743891 [TBL] [Abstract][Full Text] [Related]
13. Salinipeptins: Integrated Genomic and Chemical Approaches Reveal Unusual d-Amino Acid-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs) from a Great Salt Lake Streptomyces sp. Shang Z; Winter JM; Kauffman CA; Yang I; Fenical W ACS Chem Biol; 2019 Mar; 14(3):415-425. PubMed ID: 30753052 [TBL] [Abstract][Full Text] [Related]
15. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. Hartman MC; Josephson K; Lin CW; Szostak JW PLoS One; 2007 Oct; 2(10):e972. PubMed ID: 17912351 [TBL] [Abstract][Full Text] [Related]
16. NMR of conotoxins: structural features and an analysis of chemical shifts of post-translationally modified amino acids. Marx UC; Daly NL; Craik DJ Magn Reson Chem; 2006 Jul; 44 Spec No():S41-50. PubMed ID: 16826542 [TBL] [Abstract][Full Text] [Related]
17. Post-translational amino acid isomerization: a functionally important D-amino acid in an excitatory peptide. Buczek O; Yoshikami D; Bulaj G; Jimenez EC; Olivera BM J Biol Chem; 2005 Feb; 280(6):4247-53. PubMed ID: 15561705 [TBL] [Abstract][Full Text] [Related]
18. Expanding the Structural Space of Ribosomal Peptides: Autocatalytic N-Methylation in Omphalotin Biosynthesis. Aldemir H; Gulder TAM Angew Chem Int Ed Engl; 2017 Oct; 56(44):13570-13572. PubMed ID: 28949431 [TBL] [Abstract][Full Text] [Related]
19. Analysis of bromotryptophan and hydroxyproline modifications by high-resolution, high-accuracy precursor ion scanning utilizing fragment ions with mass-deficient mass tags. Steen H; Mann M Anal Chem; 2002 Dec; 74(24):6230-6. PubMed ID: 12510743 [TBL] [Abstract][Full Text] [Related]
20. Total chemical synthesis and NMR characterization of the glycopeptide tx5a, a heavily post-translationally modified conotoxin, reveals that the glycan structure is alpha-D-Gal-(1-->3)-alpha-D-GalNAc. Kang J; Low W; Norberg T; Meisenhelder J; Hansson K; Stenflo J; Zhou GP; Imperial J; Olivera BM; Rigby AC; Craig AG Eur J Biochem; 2004 Dec; 271(23-24):4939-49. PubMed ID: 15606782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]