These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30663561)

  • 21. MMAR_2770, a new enzyme involved in biotin biosynthesis, is essential for the growth of Mycobacterium marinum in macrophages and zebrafish.
    Yu J; Niu C; Wang D; Li M; Teo W; Sun G; Wang J; Liu J; Gao Q
    Microbes Infect; 2011 Jan; 13(1):33-41. PubMed ID: 20974274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents.
    Butman HS; Kotzé TJ; Dowd CS; Strauss E
    Front Cell Infect Microbiol; 2020; 10():605662. PubMed ID: 33384970
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of glucosyl-3-phosphoglycerate phosphatase as a novel drug target against resistant strain of Mycobacterium tuberculosis (XDR1219) by using comparative metabolic pathway approach.
    Uddin R; Zahra NU; Azam SS
    Comput Biol Chem; 2019 Apr; 79():91-102. PubMed ID: 30743161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets.
    Jankute M; Grover S; Rana AK; Besra GS
    Future Microbiol; 2012 Jan; 7(1):129-47. PubMed ID: 22191451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vitamins Based Novel Target Pathways/Molecules as Possible Emerging Drug Targets for the Management of Tuberculosis.
    Sharma A; Jain K; Flora SJS
    Med Chem; 2018; 14(3):212-224. PubMed ID: 29110620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis as a target for the development of new drugs against tuberculosis.
    Obiol-Pardo C; Rubio-Martinez J; Imperial S
    Curr Med Chem; 2011; 18(9):1325-38. PubMed ID: 21366531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Prospects for development of new antituberculous drugs].
    Tomioka H
    Kekkaku; 2002 Aug; 77(8):573-84. PubMed ID: 12235850
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitor binding studies of
    Mallavarapu BD; Abdullah M; Saxena S; Guruprasad L
    J Biomol Struct Dyn; 2019 Sep; 37(14):3751-3763. PubMed ID: 30239262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arginine-deprivation-induced oxidative damage sterilizes
    Tiwari S; van Tonder AJ; Vilchèze C; Mendes V; Thomas SE; Malek A; Chen B; Chen M; Kim J; Blundell TL; Parkhill J; Weinrick B; Berney M; Jacobs WR
    Proc Natl Acad Sci U S A; 2018 Sep; 115(39):9779-9784. PubMed ID: 30143580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting the histidine pathway in Mycobacterium tuberculosis.
    Lunardi J; Nunes JE; Bizarro CV; Basso LA; Santos DS; Machado P
    Curr Top Med Chem; 2013; 13(22):2866-84. PubMed ID: 24111909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational evaluation of phytocompounds for combating drug resistant tuberculosis by multi-targeted therapy.
    Sundarrajan S; Lulu S; Arumugam M
    J Mol Model; 2015 Sep; 21(9):247. PubMed ID: 26323856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gut Microbiota Metabolite Indole Propionic Acid Targets Tryptophan Biosynthesis in
    Negatu DA; Yamada Y; Xi Y; Go ML; Zimmerman M; Ganapathy U; Dartois V; Gengenbacher M; Dick T
    mBio; 2019 Mar; 10(2):. PubMed ID: 30914514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthetic and Synthetic Strategies for Assembling Capuramycin-Type Antituberculosis Antibiotics.
    Biecker AL; Liu X; Thorson JS; Yang Z; Van Lanen SG
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30691073
    [No Abstract]   [Full Text] [Related]  

  • 34. Mycobacterium tuberculosis cysteine biosynthesis genes mec+-cysO-cysM confer resistance to clofazimine.
    Burns-Huang K; Mundhra S
    Tuberculosis (Edinb); 2019 Mar; 115():63-66. PubMed ID: 30948178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis.
    Prosser GA; Rodenburg A; Khoury H; de Chiara C; Howell S; Snijders AP; de Carvalho LP
    Antimicrob Agents Chemother; 2016 Oct; 60(10):6091-9. PubMed ID: 27480853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-Activity Relationships of the MEPicides: N-Acyl and O-Linked Analogs of FR900098 as Inhibitors of Dxr from Mycobacterium tuberculosis and Yersinia pestis.
    San Jose G; Jackson ER; Haymond A; Johny C; Edwards RL; Wang X; Brothers RC; Edelstein EK; Odom AR; Boshoff HI; Couch RD; Dowd CS
    ACS Infect Dis; 2016 Dec; 2(12):923-935. PubMed ID: 27676224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic and chemical validation identifies Mycobacterium tuberculosis topoisomerase I as an attractive anti-tubercular target.
    Ravishankar S; Ambady A; Awasthy D; Mudugal NV; Menasinakai S; Jatheendranath S; Guptha S; Sharma S; Balakrishnan G; Nandishaiah R; Ramachandran V; Eyermann CJ; Reck F; Rudrapatna S; Sambandamurthy VK; Sharma UK
    Tuberculosis (Edinb); 2015 Sep; 95(5):589-98. PubMed ID: 26073894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis.
    Nguyen PC; Delorme V; Bénarouche A; Guy A; Landry V; Audebert S; Pophillat M; Camoin L; Crauste C; Galano JM; Durand T; Brodin P; Canaan S; Cavalier JF
    Bioorg Chem; 2018 Dec; 81():414-424. PubMed ID: 30212765
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and Molecular Dynamics of
    Burley KH; Cuthbert BJ; Basu P; Newcombe J; Irimpan EM; Quechol R; Foik IP; Mobley DL; Beste DJV; Goulding CW
    ACS Infect Dis; 2021 Jan; 7(1):174-188. PubMed ID: 33356117
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.