These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 30663769)
21. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis. van der Linde K; Doehlemann G Methods Mol Biol; 2013; 975():47-60. PubMed ID: 23386294 [TBL] [Abstract][Full Text] [Related]
22. The fungal core effector Pep1 is conserved across smuts of dicots and monocots. Hemetsberger C; Mueller AN; Matei A; Herrberger C; Hensel G; Kumlehn J; Mishra B; Sharma R; Thines M; Hückelhoven R; Doehlemann G New Phytol; 2015 May; 206(3):1116-1126. PubMed ID: 25628012 [TBL] [Abstract][Full Text] [Related]
23. Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the Smut Fungus Melanopsichium pennsylvanicum. Sharma R; Mishra B; Runge F; Thines M Genome Biol Evol; 2014 Jul; 6(8):2034-49. PubMed ID: 25062916 [TBL] [Abstract][Full Text] [Related]
24. Sporisorium reilianum possesses a pool of effector proteins that modulate virulence on maize. Ghareeb H; Zhao Y; Schirawski J Mol Plant Pathol; 2019 Jan; 20(1):124-136. PubMed ID: 30136754 [TBL] [Abstract][Full Text] [Related]
25. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of Schuster M; Schweizer G; Reißmann S; Happel P; Aßmann D; Rössel N; Güldener U; Mannhaupt G; Ludwig N; Winterberg S; Pellegrin C; Tanaka S; Vincon V; Presti LL; Wang L; Bender L; Gonzalez C; Vranes M; Kämper J; Seong K; Krasileva K; Kahmann R Mol Plant Microbe Interact; 2024 Mar; 37(3):250-263. PubMed ID: 38416124 [TBL] [Abstract][Full Text] [Related]
26. 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction. Fernandez D; Tisserant E; Talhinhas P; Azinheira H; Vieira A; Petitot AS; Loureiro A; Poulain J; Da Silva C; Silva Mdo C; Duplessis S Mol Plant Pathol; 2012 Jan; 13(1):17-37. PubMed ID: 21726390 [TBL] [Abstract][Full Text] [Related]
27. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Ma LS; Wang L; Trippel C; Mendoza-Mendoza A; Ullmann S; Moretti M; Carsten A; Kahnt J; Reissmann S; Zechmann B; Bange G; Kahmann R Nat Commun; 2018 Apr; 9(1):1711. PubMed ID: 29703884 [TBL] [Abstract][Full Text] [Related]
28. Transcripts and tumors: regulatory and metabolic programming during biotrophic phytopathogenesis. Schmitz L; McCotter S; Kretschmer M; Kronstad JW; Heimel K F1000Res; 2018; 7():. PubMed ID: 30519451 [TBL] [Abstract][Full Text] [Related]
29. Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. Meinhardt LW; Costa GG; Thomazella DP; Teixeira PJ; Carazzolle MF; Schuster SC; Carlson JE; Guiltinan MJ; Mieczkowski P; Farmer A; Ramaraj T; Crozier J; Davis RE; Shao J; Melnick RL; Pereira GA; Bailey BA BMC Genomics; 2014 Feb; 15():164. PubMed ID: 24571091 [TBL] [Abstract][Full Text] [Related]
30. Exploring links between antisense RNAs and pathogenesis in Ustilago maydis through transcript and gene characterization. Goulet KM; Storfie ERM; Saville BJ Fungal Genet Biol; 2020 Jan; 134():103283. PubMed ID: 31629082 [TBL] [Abstract][Full Text] [Related]
31. Cellular and proteomic events associated with the localized formation of smut-gall during Zizania latifolia-Ustilago esculenta interaction. Jose RC; Bengyella L; Handique PJ; Talukdar NC Microb Pathog; 2019 Jan; 126():79-84. PubMed ID: 30367966 [TBL] [Abstract][Full Text] [Related]
32. Cell biology of corn smut disease-Ustilago maydis as a model for biotrophic interactions. Matei A; Doehlemann G Curr Opin Microbiol; 2016 Dec; 34():60-66. PubMed ID: 27504540 [TBL] [Abstract][Full Text] [Related]
33. Investigating the Ustilago maydis/Zea mays pathosystem: transcriptional responses and novel functional aspects of a fungal calcineurin regulatory B subunit. Donaldson ME; Meng S; Gagarinova A; Babu M; Lambie SC; Swiadek AA; Saville BJ Fungal Genet Biol; 2013; 58-59():91-104. PubMed ID: 23973481 [TBL] [Abstract][Full Text] [Related]
34. Ustilago maydis as a Pathogen. Brefort T; Doehlemann G; Mendoza-Mendoza A; Reissmann S; Djamei A; Kahmann R Annu Rev Phytopathol; 2009; 47():423-45. PubMed ID: 19400641 [TBL] [Abstract][Full Text] [Related]
35. A conserved extracellular Ribo1 with broad-spectrum cytotoxic activity enables smut fungi to compete with host-associated bacteria. Ökmen B; Katzy P; Huang L; Wemhöner R; Doehlemann G New Phytol; 2023 Dec; 240(5):1976-1989. PubMed ID: 37680042 [TBL] [Abstract][Full Text] [Related]
36. A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. Han X; Altegoer F; Steinchen W; Binnebesel L; Schuhmacher J; Glatter T; Giammarinaro PI; Djamei A; Rensing SA; Reissmann S; Kahmann R; Bange G Nature; 2019 Jan; 565(7741):650-653. PubMed ID: 30651637 [TBL] [Abstract][Full Text] [Related]
37. Flax rust infection transcriptomics reveals a transcriptional profile that may be indicative for rust Avr genes. Wu W; Nemri A; Blackman LM; Catanzariti AM; Sperschneider J; Lawrence GJ; Dodds PN; Jones DA; Hardham AR PLoS One; 2019; 14(12):e0226106. PubMed ID: 31830116 [TBL] [Abstract][Full Text] [Related]
38. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis. Ghareeb H; Drechsler F; Löfke C; Teichmann T; Schirawski J Plant Physiol; 2015 Dec; 169(4):2789-804. PubMed ID: 26511912 [TBL] [Abstract][Full Text] [Related]
39. A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Dutheil JY; Mannhaupt G; Schweizer G; M K Sieber C; Münsterkötter M; Güldener U; Schirawski J; Kahmann R Genome Biol Evol; 2016 Feb; 8(3):681-704. PubMed ID: 26872771 [TBL] [Abstract][Full Text] [Related]
40. The WOPR Protein Ros1 Is a Master Regulator of Sporogenesis and Late Effector Gene Expression in the Maize Pathogen Ustilago maydis. Tollot M; Assmann D; Becker C; Altmüller J; Dutheil JY; Wegner CE; Kahmann R PLoS Pathog; 2016 Jun; 12(6):e1005697. PubMed ID: 27332891 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]