These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30663873)

  • 1. Cytosolic Delivery of Proteins Using Amphiphilic Polymers with 2-Pyridinecarboxaldehyde Groups for Site-Selective Attachment.
    Sangsuwan R; Tachachartvanich P; Francis MB
    J Am Chem Soc; 2019 Feb; 141(6):2376-2383. PubMed ID: 30663873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymers for cytosolic protein delivery.
    Lv J; Fan Q; Wang H; Cheng Y
    Biomaterials; 2019 Oct; 218():119358. PubMed ID: 31349095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Smart' delivery systems for biomolecular therapeutics.
    Stayton PS; El-Sayed ME; Murthy N; Bulmus V; Lackey C; Cheung C; Hoffman AS
    Orthod Craniofac Res; 2005 Aug; 8(3):219-25. PubMed ID: 16022724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications.
    Sabra S; Abdelmoneem M; Abdelwakil M; Mabrouk MT; Anwar D; Mohamed R; Khattab S; Bekhit A; Elkhodairy K; Freag M; Elzoghby A
    Curr Pharm Des; 2017; 23(35):5213-5229. PubMed ID: 28552068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Intracellular Delivery of RNase A Using DNA Origami Carriers.
    Zhao S; Duan F; Liu S; Wu T; Shang Y; Tian R; Liu J; Wang ZG; Jiang Q; Ding B
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11112-11118. PubMed ID: 30874429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs.
    Martin C; Aibani N; Callan JF; Callan B
    Ther Deliv; 2016; 7(1):15-31. PubMed ID: 26652620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel drug delivery system obtained from hydrophobic modified amphiphilic polymers by Maillard reaction.
    Feng N; Wu H; Xie Y; Wu Q
    Int J Biol Macromol; 2020 Aug; 157():146-150. PubMed ID: 32353493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Guanidinium-Rich Polymer for Efficient Cytosolic Delivery of Native Proteins.
    Yu C; Tan E; Xu Y; Lv J; Cheng Y
    Bioconjug Chem; 2019 Feb; 30(2):413-417. PubMed ID: 30383369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers.
    Wu Z; Gan Z; Chen B; Chen F; Cao J; Luo X
    Biomater Sci; 2019 Aug; 7(8):3190-3203. PubMed ID: 31145392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of l-Tyrosine-Based Enzyme-Responsive Amphiphilic Poly(ester-urethane) Nanocarriers for Multiple Drug Delivery to Cancer Cells.
    Aluri R; Jayakannan M
    Biomacromolecules; 2017 Jan; 18(1):189-200. PubMed ID: 28064504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides.
    Lv J; Wang H; Rong G; Cheng Y
    Acc Chem Res; 2022 Mar; 55(5):722-733. PubMed ID: 35175741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of drug resistance reversal in Dox-resistant MCF-7 cells by pH-responsive amphiphilic polyphosphazene containing diisopropylamino side groups.
    Qiu L; Zheng C; Zhao Q
    Mol Pharm; 2012 May; 9(5):1109-17. PubMed ID: 22494535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(amidoamine) polymers: soluble linear amphiphilic drug-delivery systems for genes, proteins and oligonucleotides.
    Pettit MW; Griffiths P; Ferruti P; Richardson SC
    Ther Deliv; 2011 Jul; 2(7):907-17. PubMed ID: 22833902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing chemically modified redox-responsive proteins as smart therapeutics.
    Tang Q; Wang J; Jiang Y; Zhang M; Chang J; Xu Q; Mao L; Wang M
    Chem Commun (Camb); 2019 Apr; 55(35):5163-5166. PubMed ID: 30984934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconjugation in pharmaceutical chemistry.
    Veronese FM; Morpurgo M
    Farmaco; 1999 Aug; 54(8):497-516. PubMed ID: 10510847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block.
    Tan Z; Dhande YK; Reineke TM
    Bioconjug Chem; 2017 Dec; 28(12):2985-2997. PubMed ID: 29193962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oseltamivir-conjugated polymeric micelles prepared by RAFT living radical polymerization as a new active tumor targeting drug delivery platform.
    Kapishon V; Allison S; Whitney RA; Cunningham MF; Szewczuk MR; Neufeld RJ
    Biomater Sci; 2016 Mar; 4(3):511-21. PubMed ID: 26788555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance.
    Ge Z; Liu S
    Chem Soc Rev; 2013 Sep; 42(17):7289-325. PubMed ID: 23549663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.