These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 30663884)
21. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Zhang H; Guo Q; Yang J; Ma J; Chen G; Chen T; Zhu G; Wang J; Zhang G; Wang X; Shao C Ecotoxicol Environ Saf; 2016 Nov; 133():57-62. PubMed ID: 27414256 [TBL] [Abstract][Full Text] [Related]
22. Use of Ejaz U; Khan SM; Aqeel M; Khalid N; Sarfraz W; Naeem N; Han H; Yu J; Yue G; Raposo A Front Public Health; 2022; 10():1009479. PubMed ID: 36311603 [No Abstract] [Full Text] [Related]
23. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230 [TBL] [Abstract][Full Text] [Related]
24. Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Manzoor M; Gul I; Ahmed I; Zeeshan M; Hashmi I; Amin BAZ; Kallerhoff J; Arshad M Chemosphere; 2019 Jul; 227():561-569. PubMed ID: 31005670 [TBL] [Abstract][Full Text] [Related]
25. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Luo C; Shen Z; Li X Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638 [TBL] [Abstract][Full Text] [Related]
26. Enhanced accumulation of Cd in castor (Ricinus communis L) by soil-applied chelators. Chhajro MA; Rizwan MS; Guoyong H; Jun Z; Kubar KA; Hongqing H Int J Phytoremediation; 2016; 18(7):664-70. PubMed ID: 26588431 [TBL] [Abstract][Full Text] [Related]
27. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Muhammad D; Chen F; Zhao J; Zhang G; Wu F Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355 [TBL] [Abstract][Full Text] [Related]
28. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512 [TBL] [Abstract][Full Text] [Related]
29. EDTA-assisted leaching of Pb and Cd from contaminated soil. Qiao J; Sun H; Luo X; Zhang W; Mathews S; Yin X Chemosphere; 2017 Jan; 167():422-428. PubMed ID: 27750165 [TBL] [Abstract][Full Text] [Related]
30. Plant growth regulators and EDTA improve phytoremediation potential and antioxidant response of Dysphania ambrosioides (L.) Mosyakin & Clemants in a Cd-spiked soil. Jan AU; Hadi F; Shah A; Ditta A; Nawaz MA; Tariq M Environ Sci Pollut Res Int; 2021 Aug; 28(32):43417-43430. PubMed ID: 33830421 [TBL] [Abstract][Full Text] [Related]
31. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chen Y; Li X; Shen Z Chemosphere; 2004 Oct; 57(3):187-96. PubMed ID: 15312735 [TBL] [Abstract][Full Text] [Related]
32. Fungi-assisted phytoextraction of lead: tolerance, plant growth-promoting activities and phytoavailability. Manzoor M; Gul I; Kallerhoff J; Arshad M Environ Sci Pollut Res Int; 2019 Aug; 26(23):23788-23797. PubMed ID: 31209746 [TBL] [Abstract][Full Text] [Related]
33. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Anwar S; Khan S; Ashraf MY; Noman A; Zafar S; Liu L; Ullah S; Fahad S Int J Phytoremediation; 2017 Jun; 19(6):505-513. PubMed ID: 27819494 [TBL] [Abstract][Full Text] [Related]
34. Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings. Bricker TJ; Pichtel J; Brown HJ; Simmons M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(9):1597-610. PubMed ID: 11688677 [TBL] [Abstract][Full Text] [Related]
35. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead. Guo J; Feng R; Ding Y; Wang R J Environ Manage; 2014 Aug; 141():1-8. PubMed ID: 24762567 [TBL] [Abstract][Full Text] [Related]
36. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Grcman H; Vodnik D; Velikonja-Bolta S; Lestan D J Environ Qual; 2003; 32(2):500-6. PubMed ID: 12708673 [TBL] [Abstract][Full Text] [Related]
37. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Saifullah ; Zia MH; Meers E; Ghafoor A; Murtaza G; Sabir M; Zia-Ur-Rehman M; Tack FM Chemosphere; 2010 Apr; 79(6):652-8. PubMed ID: 20334894 [TBL] [Abstract][Full Text] [Related]
38. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445 [TBL] [Abstract][Full Text] [Related]
39. Accumulation and distribution of cadmium and lead in 28 oilseed rape cultivars grown in a contaminated field. Cao X; Wang X; Tong W; Gurajala HK; He Z; Yang X Environ Sci Pollut Res Int; 2020 Jan; 27(2):2400-2411. PubMed ID: 31786758 [TBL] [Abstract][Full Text] [Related]
40. A field study of lead phytoextraction by various scented Pelargonium cultivars. Arshad M; Silvestre J; Pinelli E; Kallerhoff J; Kaemmerer M; Tarigo A; Shahid M; Guiresse M; Pradere P; Dumat C Chemosphere; 2008 May; 71(11):2187-92. PubMed ID: 18355894 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]