These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30663918)

  • 41. A high-throughput screen for tuberculosis progression.
    Carvalho R; de Sonneville J; Stockhammer OW; Savage ND; Veneman WJ; Ottenhoff TH; Dirks RP; Meijer AH; Spaink HP
    PLoS One; 2011 Feb; 6(2):e16779. PubMed ID: 21390204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling tuberculous meningitis in zebrafish using Mycobacterium marinum.
    van Leeuwen LM; van der Kuip M; Youssef SA; de Bruin A; Bitter W; van Furth AM; van der Sar AM
    Dis Model Mech; 2014 Sep; 7(9):1111-22. PubMed ID: 24997190
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dormancy models for Mycobacterium tuberculosis: A minireview.
    Alnimr AM
    Braz J Microbiol; 2015; 46(3):641-7. PubMed ID: 26413043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Murine Mycobacterium marinum Infection Model for Longitudinal Analyses of Disease Development and the Inflammatory Response.
    Lienard J; Munke K; Carlsson F
    Methods Mol Biol; 2023; 2674():313-326. PubMed ID: 37258977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hif-1α-Induced Expression of Il-1β Protects against Mycobacterial Infection in Zebrafish.
    Ogryzko NV; Lewis A; Wilson HL; Meijer AH; Renshaw SA; Elks PM
    J Immunol; 2019 Jan; 202(2):494-502. PubMed ID: 30552162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel benzothiazinethione analogue SKLB-TB1001 displays potent antimycobacterial activities in a series of murine models.
    Gao C; Ye TH; Peng CT; Shi YJ; You XY; Xiong L; Ran K; Zhang LD; Zeng XX; Wang NY; Yu LT; Wei YQ
    Biomed Pharmacother; 2017 Apr; 88():603-609. PubMed ID: 28142116
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The zebrafish embryo as an in vivo model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds.
    Knudsen Dal NJ; Speth M; Johann K; Barz M; Beauvineau C; Wohlmann J; Fenaroli F; Gicquel B; Griffiths G; Alonso-Rodriguez N
    Dis Model Mech; 2022 Jan; 15(1):. PubMed ID: 34842273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New drugs for the treatment of Mycobacterium tuberculosis infection.
    AlMatar M; AlMandeal H; Var I; Kayar B; Köksal F
    Biomed Pharmacother; 2017 Jul; 91():546-558. PubMed ID: 28482292
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulating mycobacterial envelope integrity for antibiotic synergy with benzothiazoles.
    Habjan E; Lepioshkin A; Charitou V; Egorova A; Kazakova E; Ho VQ; Bitter W; Makarov V; Speer A
    Life Sci Alliance; 2024 Jul; 7(7):. PubMed ID: 38744470
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aryl Hydrocarbon Receptor Modulation by Tuberculosis Drugs Impairs Host Defense and Treatment Outcomes.
    Puyskens A; Stinn A; van der Vaart M; Kreuchwig A; Protze J; Pei G; Klemm M; Guhlich-Bornhof U; Hurwitz R; Krishnamoorthy G; Schaaf M; Krause G; Meijer AH; Kaufmann SHE; Moura-Alves P
    Cell Host Microbe; 2020 Feb; 27(2):238-248.e7. PubMed ID: 31901518
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Guanosine triphosphatases as novel therapeutic targets in tuberculosis.
    Rajni ; Meena LS
    Int J Infect Dis; 2010 Aug; 14(8):e682-7. PubMed ID: 20207570
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advances in the research of heterocyclic compounds as antitubercular agents.
    Yan M; Ma S
    ChemMedChem; 2012 Dec; 7(12):2063-75. PubMed ID: 23042656
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Drugs versus bugs: in pursuit of the persistent predator Mycobacterium tuberculosis.
    Sacchettini JC; Rubin EJ; Freundlich JS
    Nat Rev Microbiol; 2008 Jan; 6(1):41-52. PubMed ID: 18079742
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multistressor interactions in the zebrafish (Danio rerio): Concurrent phenanthrene exposure and Mycobacterium marinum infection.
    Prosser CM; Unger MA; Vogelbein WK
    Aquat Toxicol; 2011 Apr; 102(3-4):177-85. PubMed ID: 21356180
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptomic Approaches in the Zebrafish Model for Tuberculosis-Insights Into Host- and Pathogen-specific Determinants of the Innate Immune Response.
    Benard EL; Rougeot J; Racz PI; Spaink HP; Meijer AH
    Adv Genet; 2016; 95():217-51. PubMed ID: 27503359
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Protection and pathology in TB: learning from the zebrafish model.
    Meijer AH
    Semin Immunopathol; 2016 Mar; 38(2):261-73. PubMed ID: 26324465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis.
    Zhang YJ; Li XJ; Mi KX
    Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of Mycobacterium marinum infections in zebrafish wounds and sinus tracts.
    Chen L; Liu Z; Su Y; Wang D; Yin B; Shu B; Zhang J; Zhu X; Jia C
    Wound Repair Regen; 2017 May; 25(3):536-540. PubMed ID: 28466489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of the pathogenesis and treatment of Mycobacterium marinum infection in zebrafish.
    Takaki K; Davis JM; Winglee K; Ramakrishnan L
    Nat Protoc; 2013 Jun; 8(6):1114-24. PubMed ID: 23680983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of immune response against Mycobacterium marinum infection in the main hematopoietic organ of adult zebrafish (Danio rerio).
    Harjula SE; Saralahti AK; Ojanen MJT; Rantapero T; Uusi-Mäkelä MIE; Nykter M; Lohi O; Parikka M; Rämet M
    Dev Comp Immunol; 2020 Feb; 103():103523. PubMed ID: 31626817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.