These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30664298)

  • 21. Dual Role of a Novel Heteroleptic Cu(I) Complex in Visible-Light-Driven CO
    Bruschi C; Gui X; Rauthe P; Fuhr O; Unterreiner AN; Klopper W; Bizzarri C
    Chemistry; 2024 Aug; 30(44):e202400765. PubMed ID: 38742808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast singlet-singlet energy transfer in self-assembled via metal-ligand axial coordination of free-base porphyrin-zinc phthalocyanine and free-base porphyrin-zinc naphthalocyanine dyads.
    Maligaspe E; Kumpulainen T; Lemmetyinen H; Tkachenko NV; Subbaiyan NK; Zandler ME; D'Souza F
    J Phys Chem A; 2010 Jan; 114(1):268-77. PubMed ID: 19928821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Face-to-face pacman-type porphyrin-fullerene dyads: design, synthesis, charge-transfer interactions, and photophysical studies.
    D'Souza F; Maligaspe E; Karr PA; Schumacher AL; El Ojaimi M; Gros CP; Barbe JM; Ohkubo K; Fukuzumi S
    Chemistry; 2008; 14(2):674-81. PubMed ID: 17924593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, characterization, and preliminary intramolecular energy transfer studies of rigid, emissive, rhenium-linked porphyrin dimers.
    Splan KE; Keefe MH; Massari AM; Walters KA; Hupp JT
    Inorg Chem; 2002 Feb; 41(4):619-21. PubMed ID: 11849055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prolonging the Triplet State Lifetimes of Rhenium Complexes with Imidazole-Pyridine Framework for Efficient CO
    Qiu LQ; Chen KH; Yang ZW; Ren FY; He LN
    Chemistry; 2021 Nov; 27(62):15536-15544. PubMed ID: 34431546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photo-induced ligand substitution at a remote site via electron transfer in a porphyrin-appended rhenium carbonyl supermolecule.
    Gabrielsson A; Hartl F; Smith JR; Perutz RN
    Chem Commun (Camb); 2002 May; (9):950-1. PubMed ID: 12123063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zinc porphyrin-Re(I) bipyridyl-fullerene triad: synthesis, characterization, and kinetics of the stepwise electron-transfer processes initiated by visible excitation.
    Cavigli P; Da Ros T; Kahnt A; Gamberoni M; Indelli MT; Iengo E
    Inorg Chem; 2015 Jan; 54(1):280-92. PubMed ID: 25523017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhenium(i) trinuclear rings as highly efficient redox photosensitizers for photocatalytic CO
    Rohacova J; Ishitani O
    Chem Sci; 2016 Nov; 7(11):6728-6739. PubMed ID: 28451117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitised Ln
    Liew JY; Brown JJ; Moore EG; Schwalbe M
    Chemistry; 2016 Nov; 22(45):16178-16186. PubMed ID: 27667495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO
    Ren FY; Chen K; Qiu LQ; Chen JM; Darensbourg DJ; He LN
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202200751. PubMed ID: 35441773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient Photocatalysts for CO2 Reduction.
    Sahara G; Ishitani O
    Inorg Chem; 2015 Jun; 54(11):5096-104. PubMed ID: 25629382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rhenium(I) tricarbonyl polypyridine complexes showing strong absorption of visible light and long-lived triplet excited states as a triplet photosensitizer for triplet-triplet annihilation upconversion.
    Yi X; Zhao J; Wu W; Huang D; Ji S; Sun J
    Dalton Trans; 2012 Aug; 41(29):8931-40. PubMed ID: 22714817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Visible-light Homogeneous Photocatalytic Conversion of CO
    Rao H; Bonin J; Robert M
    ChemSusChem; 2017 Nov; 10(22):4447-4450. PubMed ID: 28862388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Ir(III) Complex Photosensitizer With Strong Visible Light Absorption for Photocatalytic CO
    Kuramochi Y; Ishitani O
    Front Chem; 2019; 7():259. PubMed ID: 31119121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Judicious Design of Cationic, Cyclometalated Ir(III) Complexes for Photochemical Energy Conversion and Optoelectronics.
    Mills IN; Porras JA; Bernhard S
    Acc Chem Res; 2018 Feb; 51(2):352-364. PubMed ID: 29336548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes.
    Gholamkhass B; Mametsuka H; Koike K; Tanabe T; Furue M; Ishitani O
    Inorg Chem; 2005 Apr; 44(7):2326-36. PubMed ID: 15792468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and characterization of mono- and dinuclear phenanthroline-extended tetramesitylporphyrin complexes as well as UV-Vis and EPR studies on their one-electron reduced species.
    Matlachowski C; Schwalbe M
    Dalton Trans; 2013 Mar; 42(10):3490-503. PubMed ID: 23263258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption and Photochemical Properties of a Molecular CO2 Reduction Catalyst in Hierarchical Mesoporous ZSM-5: An In Situ FTIR Study.
    Dubois KD; Petushkov A; Garcia Cardona E; Larsen SC; Li G
    J Phys Chem Lett; 2012 Feb; 3(4):486-92. PubMed ID: 26286052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of a Stable Ru-Re Hybrid System Based on Multifunctional MOF-253 for Efficient Photocatalytic CO
    Deng X; Albero J; Xu L; GarcĂ­a H; Li Z
    Inorg Chem; 2018 Jul; 57(14):8276-8286. PubMed ID: 29965734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High catalytic abilities of binuclear rhenium(i) complexes in the photochemical reduction of CO2 with a ruthenium(ii) photosensitiser.
    Tamaki Y; Imori D; Morimoto T; Koike K; Ishitani O
    Dalton Trans; 2016 Oct; 45(37):14668-77. PubMed ID: 27180997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.