BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30664347)

  • 21. A computational insight into endocrine disruption by polychlorinated biphenyls via non-covalent interactions with human nuclear receptors.
    Akinola LK; Uzairu A; Shallangwa GA; Abechi SE
    Ecotoxicol Environ Saf; 2021 May; 214():112086. PubMed ID: 33640727
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monohaloacetonitriles induce cytotoxicity and exhibit different mode of action in endocrine disruption.
    Park CG; Jung KC; Kim DH; Kim YJ
    Sci Total Environ; 2021 Mar; 761():143316. PubMed ID: 33190885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of estrogenic and androgenic activity of phthalates by the XenoScreen YES/YAS in vitro assay.
    Czernych R; Chraniuk M; Zagożdżon P; Wolska L
    Environ Toxicol Pharmacol; 2017 Jul; 53():95-104. PubMed ID: 28528305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disruption of classical estrogenic targets in brown trout primary hepatocytes by the model androgens testosterone and dihydrotestosterone.
    Lopes C; Madureira TV; Gonçalves JF; Rocha E
    Aquat Toxicol; 2020 Oct; 227():105586. PubMed ID: 32882451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Widely used pharmaceuticals present in the environment revealed as in vitro antagonists for human estrogen and androgen receptors.
    Ezechiáš M; Janochová J; Filipová A; Křesinová Z; Cajthaml T
    Chemosphere; 2016 Jun; 152():284-91. PubMed ID: 26978704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ERα-agonist and ERβ-antagonist bifunctional next-generation bisphenols with no halogens: BPAP, BPB, and BPZ.
    Liu X; Matsuyama Y; Shimohigashi M; Shimohigashi Y
    Toxicol Lett; 2021 Jul; 345():24-33. PubMed ID: 33857583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of environmental estrogens and antiandrogens on endocrine function, gene regulation, and health in fish.
    Rempel MA; Schlenk D
    Int Rev Cell Mol Biol; 2008; 267():207-52. PubMed ID: 18544500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Androgens and bone.
    Vanderschueren D; Vandenput L; Boonen S; Lindberg MK; Bouillon R; Ohlsson C
    Endocr Rev; 2004 Jun; 25(3):389-425. PubMed ID: 15180950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On selecting a minimal set of in vitro assays to reliably determine estrogen agonist activity.
    Judson RS; Houck KA; Watt ED; Thomas RS
    Regul Toxicol Pharmacol; 2017 Dec; 91():39-49. PubMed ID: 28993267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor.
    Park C; Song H; Choi J; Sim S; Kojima H; Park J; Iida M; Lee Y
    Environ Pollut; 2020 May; 260():114036. PubMed ID: 31995776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of estrogens, estrogen-like compounds, and endocrine disruptors in adipocytes.
    Lizcano F
    Front Endocrinol (Lausanne); 2022; 13():921504. PubMed ID: 36213285
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing the androgenic and estrogenic properties of progestins used in contraception and hormone therapy.
    Louw-du Toit R; Perkins MS; Hapgood JP; Africander D
    Biochem Biophys Res Commun; 2017 Sep; 491(1):140-146. PubMed ID: 28711501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of new alternative methods for the identification of estrogenic, androgenic and steroidogenic effects: a comparative in vitro/in silico study.
    Najjar A; Wilm A; Meinhardt J; Mueller N; Boettcher M; Ebmeyer J; Schepky A; Lange D
    Arch Toxicol; 2024 Jan; 98(1):251-266. PubMed ID: 37819454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of hormonal activity (estrogen, androgen and progestin) of standardized plant extracts for large scale use in hormone replacement therapy.
    Beck V; Unterrieder E; Krenn L; Kubelka W; Jungbauer A
    J Steroid Biochem Mol Biol; 2003 Feb; 84(2-3):259-68. PubMed ID: 12711012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The application of reporter gene assays for the detection of endocrine disruptors in sport supplements.
    Plotan M; Elliott CT; Scippo ML; Muller M; Antignac JP; Malone E; Bovee TF; Mitchell S; Connolly L
    Anal Chim Acta; 2011 Aug; 700(1-2):34-40. PubMed ID: 21742114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In house validation of recombinant yeast estrogen and androgen receptor agonist and antagonist screening assays.
    Kolle SN; Kamp HG; Huener HA; Knickel J; Verlohner A; Woitkowiak C; Landsiedel R; van Ravenzwaay B
    Toxicol In Vitro; 2010 Oct; 24(7):2030-40. PubMed ID: 20732407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pesticides as estrogen disruptors: QSAR for selective ERα and ERβ binding of pesticides.
    Agatonovic-Kustrin S; Alexander M; Morton DW; Turner JV
    Comb Chem High Throughput Screen; 2011 Feb; 14(2):85-92. PubMed ID: 20958252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of estrogen receptor α activities in polychlorinated biphenyls by in vitro dual-luciferase reporter gene assay.
    Zhang Q; Lu M; Wang C; Du J; Zhou P; Zhao M
    Environ Pollut; 2014 Jun; 189():169-75. PubMed ID: 24675366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays.
    Sonneveld E; Jansen HJ; Riteco JA; Brouwer A; van der Burg B
    Toxicol Sci; 2005 Jan; 83(1):136-48. PubMed ID: 15483189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid and reagent-free bioassay using autobioluminescent yeasts to detect agonistic and antagonistic activities of bisphenols against rat androgen receptor and progesterone receptor.
    Huang Y; Zhang W; Zhang C; Cui N; Xiao Z; Wang R; Su X
    J Steroid Biochem Mol Biol; 2022 Sep; 222():106151. PubMed ID: 35787454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.