BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30664728)

  • 1. Structural insights into a high fidelity variant of SpCas9.
    Guo M; Ren K; Zhu Y; Tang Z; Wang Y; Zhang B; Huang Z
    Cell Res; 2019 Mar; 29(3):183-192. PubMed ID: 30664728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W; Zhang H; Zhang Y; Wang Y; Gan J; Ji Q
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster.
    Ni XY; Zhou ZD; Huang J; Qiao X
    Arch Insect Biochem Physiol; 2020 May; 104(1):e21662. PubMed ID: 32027059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
    Kang M; Zuo Z; Yin Z; Gu J
    J Chem Inf Model; 2022 Jun; 62(12):3057-3066. PubMed ID: 35666156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.
    Hirano S; Nishimasu H; Ishitani R; Nureki O
    Mol Cell; 2016 Mar; 61(6):886-94. PubMed ID: 26990991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells.
    Kim HK; Lee S; Kim Y; Park J; Min S; Choi JW; Huang TP; Yoon S; Liu DR; Kim HH
    Nat Biomed Eng; 2020 Jan; 4(1):111-124. PubMed ID: 31937939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH; Miller SM; Geurts MH; Tang W; Chen L; Sun N; Zeina CM; Gao X; Rees HA; Lin Z; Liu DR
    Nature; 2018 Apr; 556(7699):57-63. PubMed ID: 29512652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y
    Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structure-based optimization and design of CRISPR protein xCas9].
    Xue D; Zhu H; Du W; Tang H; Huang Q
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1385-1395. PubMed ID: 33973451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the affinities of CRISPR-Cas9 nucleases for cognate protospacer adjacent motif (PAM) sequences.
    Mekler V; Kuznedelov K; Severinov K
    J Biol Chem; 2020 May; 295(19):6509-6517. PubMed ID: 32241913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expanding PAM recognition and enhancing base editing activity of Cas9 variants with non-PI domain mutations derived from xCas9.
    Xie L; Hu Y; Li L; Jiang L; Jiao Y; Wang Y; Zhou L; Tao R; Qu J; Chen Q; Yao S
    FEBS J; 2022 Oct; 289(19):5899-5913. PubMed ID: 35411720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.
    Anders C; Bargsten K; Jinek M
    Mol Cell; 2016 Mar; 61(6):895-902. PubMed ID: 26990992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
    Kleinstiver BP; Pattanayak V; Prew MS; Tsai SQ; Nguyen NT; Zheng Z; Joung JK
    Nature; 2016 Jan; 529(7587):490-5. PubMed ID: 26735016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
    Niu Q; Wu S; Li Y; Yang X; Liu P; Xu Y; Lang Z
    J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-depth assessment of the PAM compatibility and editing activities of Cas9 variants.
    Zhang W; Yin J; Zhang-Ding Z; Xin C; Liu M; Wang Y; Ai C; Hu J
    Nucleic Acids Res; 2021 Sep; 49(15):8785-8795. PubMed ID: 34133740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An engineered ScCas9 with broad PAM range and high specificity and activity.
    Chatterjee P; Jakimo N; Lee J; Amrani N; Rodríguez T; Koseki SRT; Tysinger E; Qing R; Hao S; Sontheimer EJ; Jacobson J
    Nat Biotechnol; 2020 Oct; 38(10):1154-1158. PubMed ID: 32393822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered dual selection for directed evolution of SpCas9 PAM specificity.
    Goldberg GW; Spencer JM; Giganti DO; Camellato BR; Agmon N; Ichikawa DM; Boeke JD; Noyes MB
    Nat Commun; 2021 Jan; 12(1):349. PubMed ID: 33441553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.