BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30665087)

  • 1. Using a hybrid-like supported catalyst to improve green fuel production through hydrothermal liquefaction of Scenedesmus obliquus microalgae.
    Kohansal K; Tavasoli A; Bozorg A
    Bioresour Technol; 2019 Apr; 277():136-147. PubMed ID: 30665087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal liquefaction of Scenedesmus obliquus using a novel catalyst derived from clam shells: Solid residue as catalyst for hydrogen production.
    Arun J; Gopinath KP; SundarRajan P; Malolan R; Adithya S; Sai Jayaraman R; Srinivaasan Ajay P
    Bioresour Technol; 2020 Aug; 310():123443. PubMed ID: 32353767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies.
    Mahima J; Sundaresh RK; Gopinath KP; Rajan PSS; Arun J; Kim SH; Pugazhendhi A
    Sci Total Environ; 2021 Jul; 778():146262. PubMed ID: 33714809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae.
    Duan P; Wang B; Xu Y
    Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.
    Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions.
    Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V
    J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgae hydrothermal liquefaction and derived biocrude upgrading with modified SBA-15 catalysts.
    Li J; Fang X; Bian J; Guo Y; Li C
    Bioresour Technol; 2018 Oct; 266():541-547. PubMed ID: 30015249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae.
    Tang X; Zhang C; Li Z; Yang X
    Bioresour Technol; 2016 Feb; 202():8-14. PubMed ID: 26700753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks.
    Xu YP; Duan PG; Wang F; Guan QQ
    Biotechnol Biofuels; 2018; 11():83. PubMed ID: 29619079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ni-Ru/CeO
    Xu D; Guo S; Liu L; Hua H; Guo Y; Wang S; Jing Z
    Biomed Res Int; 2018; 2018():8376127. PubMed ID: 29854797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae bio-oil production by pyrolysis and hydrothermal liquefaction: Mechanism and characteristics.
    Ağbulut Ü; Sirohi R; Lichtfouse E; Chen WH; Len C; Show PL; Le AT; Nguyen XP; Hoang AT
    Bioresour Technol; 2023 May; 376():128860. PubMed ID: 36907228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.
    Shakya R; Adhikari S; Mahadevan R; Hassan EB; Dempster TA
    Bioresour Technol; 2018 Mar; 252():28-36. PubMed ID: 29306126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature catalyst based Hydrothermal liquefaction of harmful Macroalgal blooms, and aqueous phase nutrient recycling by microalgae.
    Kumar V; Kumar S; Chauhan PK; Verma M; Bahuguna V; Joshi HC; Ahmad W; Negi P; Sharma N; Ramola B; Rautela I; Nanda M; Vlaskin MS
    Sci Rep; 2019 Aug; 9(1):11384. PubMed ID: 31388042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupported Ni metal catalyst in hydrothermal liquefaction of oak wood: Effect of catalyst surface modification.
    de Caprariis B; Bracciale MP; Bavasso I; Chen G; Damizia M; Genova V; Marra F; Paglia L; Pulci G; Scarsella M; Tai L; De Filippis P
    Sci Total Environ; 2020 Mar; 709():136215. PubMed ID: 31905587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of strain-specific parameters on hydrothermal liquefaction of microalgae.
    López Barreiro D; Zamalloa C; Boon N; Vyverman W; Ronsse F; Brilman W; Prins W
    Bioresour Technol; 2013 Oct; 146():463-471. PubMed ID: 23958678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents.
    Caporgno MP; Pruvost J; Legrand J; Lepine O; Tazerout M; Bengoa C
    Bioresour Technol; 2016 Aug; 214():404-410. PubMed ID: 27155795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgae harvest influences the energy recovery: A case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production.
    Wang S; Yerkebulan M; Abomohra AE; El-Khodary S; Wang Q
    Bioresour Technol; 2019 Aug; 286():121371. PubMed ID: 31030071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils.
    Aysu T; Sanna A
    Bioresour Technol; 2015 Oct; 194():108-16. PubMed ID: 26188553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water.
    Gai C; Li Y; Peng N; Fan A; Liu Z
    Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing the conditions for hydrothermal liquefaction of barley straw for bio-crude oil production using response surface methodology.
    Zhu Z; Rosendahl L; Toor SS; Chen G
    Sci Total Environ; 2018 Jul; 630():560-569. PubMed ID: 29486447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.