BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30665111)

  • 1. Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water.
    Zheng B; Liu X; Hu J; Wang F; Hu X; Zhu Y; Lv X; Du J; Xiao D
    J Hazard Mater; 2019 Apr; 368():81-89. PubMed ID: 30665111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly selective anchoring silver nanoclusters on MOF/SOF heterostructured framework for efficient adsorption of radioactive iodine from aqueous solution.
    Li H; Li Y; Li B; Liu D; Zhou Y
    Chemosphere; 2020 Aug; 252():126448. PubMed ID: 32203781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent.
    Bo A; Sarina S; Zheng Z; Yang D; Liu H; Zhu H
    J Hazard Mater; 2013 Feb; 246-247():199-205. PubMed ID: 23313892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient adsorption of radioactive iodine by covalent organic framework/chitosan aerogel.
    Wang X; Meng R; Zhao S; Jing Z; Jin Y; Zhang J; Pi X; Du Q; Chen L; Li Y
    Int J Biol Macromol; 2024 Mar; 260(Pt 2):129690. PubMed ID: 38266855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation.
    Liu S; Wang N; Zhang Y; Li Y; Han Z; Na P
    J Hazard Mater; 2015 Mar; 284():171-81. PubMed ID: 25463231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of Ag@Cu-based MOFs as efficient adsorbents for iodine anions removal from aqueous solutions.
    Gong CH; Li ZY; Chen KW; Gu AT; Wang P; Yang Y
    J Environ Radioact; 2023 Sep; 265():107211. PubMed ID: 37331177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive (90)Sr(2+) and (137)Cs(+) ions and oils.
    Wen T; Zhao Z; Shen C; Li J; Tan X; Zeb A; Wang X; Xu AW
    Sci Rep; 2016 Feb; 6():20920. PubMed ID: 26865116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Adsorption of phenanthrene from aqueous solution on cetylpyridinium bromide (CPB) -modified zeolite].
    Li J; Lin JW; Zhan YH; Chen ZM; Wang PJ
    Huan Jing Ke Xue; 2014 Feb; 35(2):611-8. PubMed ID: 24812955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The water-based synthesis of chemically stable Zr-based MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine.
    Wang Z; Huang Y; Yang J; Li Y; Zhuang Q; Gu J
    Dalton Trans; 2017 Jun; 46(23):7412-7420. PubMed ID: 28548175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Removal of nitrate from aqueous solution using cetylpyridinium chloride (CPC)-modified activated carbon as the adsorbent].
    Zheng WJ; Lin JW; Zhan YH; Fang Q; Yang MJ; Wang H
    Huan Jing Ke Xue; 2013 Nov; 34(11):4325-32. PubMed ID: 24455941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic-modified montmorillonite coating onto crosslinked chitosan as the core-shell micro-sorbent for iodide adsorptive removal via Pickering emulsion polymerization.
    Li Q; Mao Q; Yang C; Zhang S; He G; Zhang X; Zhang W
    Int J Biol Macromol; 2019 Dec; 141():987-996. PubMed ID: 31518620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal capacity and chemical speciation of groundwater iodide (I
    Li D; Kaplan DI; Sams A; Powell BA; Knox AS
    J Environ Radioact; 2018 Dec; 192():505-512. PubMed ID: 30114621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine-Capture Capacity.
    Xie Y; Pan T; Lei Q; Chen C; Dong X; Yuan Y; Shen J; Cai Y; Zhou C; Pinnau I; Han Y
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22432-22440. PubMed ID: 34431190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective removal of radioactive iodine from water using reusable Fe@Pt adsorbents.
    Jeong H; Lee DW; Hong SJ; Kim J; Kim M; Kim J; Lee HS; Park TH; Kim HK; Park JI; Kim JY; Lim SH; Hyeon T; Han B; Bae SE
    Water Res; 2022 Aug; 222():118864. PubMed ID: 35870393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granulated activated carbon modified with hydrophobic silica aerogel-potential composite materials for the removal of uranium from aqueous solutions.
    Coleman SJ; Coronado PR; Maxwell RS; Reynolds JG
    Environ Sci Technol; 2003 May; 37(10):2286-90. PubMed ID: 12785538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: Experimental and theoretical study.
    Yang J; Tai W; Wu F; Shi K; Jia T; Su Y; Liu T; Mocilac P; Hou X; Chen X
    Chemosphere; 2022 Apr; 292():133401. PubMed ID: 34953880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient capture of radioactive iodine by ZIF-8 derived porous carbon.
    Liu S; Zeng Y; Zhang A; Song Y; Ni Y; Li J; Chi F; Xiao C
    J Environ Radioact; 2022 Aug; 249():106895. PubMed ID: 35594799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions.
    Yang D; Liu H; Liu L; Sarina S; Zheng Z; Zhu H
    Nanoscale; 2013 Nov; 5(22):11011-8. PubMed ID: 24068160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and modeling study of adsorption-desorption processes with application to a deep-well injection radioactive waste disposal site.
    Rumynin VG; Konosavsky PK; Hoehn E
    J Contam Hydrol; 2005 Jan; 76(1-2):19-46. PubMed ID: 15588572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.