These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1384 related articles for article (PubMed ID: 30665140)
1. Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia. Zhang Y; Ma Y Comput Biol Med; 2019 Mar; 106():33-39. PubMed ID: 30665140 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis. Imura T; Toda H; Iwamoto Y; Inagawa T; Imada N; Tanaka R; Inoue Y; Araki H; Araki O J Stroke Cerebrovasc Dis; 2021 Oct; 30(10):106011. PubMed ID: 34325274 [TBL] [Abstract][Full Text] [Related]
3. Automated classification of neurological disorders of gait using spatio-temporal gait parameters. Pradhan C; Wuehr M; Akrami F; Neuhaeusser M; Huth S; Brandt T; Jahn K; Schniepp R J Electromyogr Kinesiol; 2015 Apr; 25(2):413-22. PubMed ID: 25725811 [TBL] [Abstract][Full Text] [Related]
4. Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer. Alabi RO; Elmusrati M; Sawazaki-Calone I; Kowalski LP; Haglund C; Coletta RD; Mäkitie AA; Salo T; Almangush A; Leivo I Int J Med Inform; 2020 Apr; 136():104068. PubMed ID: 31923822 [TBL] [Abstract][Full Text] [Related]
5. Application of supervised machine learning algorithms for classification and prediction of type-2 diabetes disease status in Afar regional state, Northeastern Ethiopia 2021. Ebrahim OA; Derbew G Sci Rep; 2023 May; 13(1):7779. PubMed ID: 37179444 [TBL] [Abstract][Full Text] [Related]
6. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. Kamruzzaman J; Begg RK IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205 [TBL] [Abstract][Full Text] [Related]
7. Machine Learning Approach to Support the Detection of Parkinson's Disease in IMU-Based Gait Analysis. Trabassi D; Serrao M; Varrecchia T; Ranavolo A; Coppola G; De Icco R; Tassorelli C; Castiglia SF Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632109 [TBL] [Abstract][Full Text] [Related]
8. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor. Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817 [TBL] [Abstract][Full Text] [Related]
9. Statistical characterization and classification of colon microarray gene expression data using multiple machine learning paradigms. Maniruzzaman M; Jahanur Rahman M; Ahammed B; Abedin MM; Suri HS; Biswas M; El-Baz A; Bangeas P; Tsoulfas G; Suri JS Comput Methods Programs Biomed; 2019 Jul; 176():173-193. PubMed ID: 31200905 [TBL] [Abstract][Full Text] [Related]
10. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
11. Sagittal gait patterns in spastic diplegia. Rodda JM; Graham HK; Carson L; Galea MP; Wolfe R J Bone Joint Surg Br; 2004 Mar; 86(2):251-8. PubMed ID: 15046442 [TBL] [Abstract][Full Text] [Related]
12. Research of the spatial-temporal gait parameters and pressure characteristic in spastic diplegia children. Pauk J; Ihnatouski M; Daunoraviciene K; Laskhousky U; Griskevicius J Acta Bioeng Biomech; 2016; 18(2):121-9. PubMed ID: 27405783 [TBL] [Abstract][Full Text] [Related]
13. Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer. Al-Azzam N; Shatnawi I Ann Med Surg (Lond); 2021 Feb; 62():53-64. PubMed ID: 33489117 [TBL] [Abstract][Full Text] [Related]
14. The detection of age groups by dynamic gait outcomes using machine learning approaches. Zhou Y; Romijnders R; Hansen C; Campen JV; Maetzler W; Hortobágyi T; Lamoth CJC Sci Rep; 2020 Mar; 10(1):4426. PubMed ID: 32157168 [TBL] [Abstract][Full Text] [Related]
15. Prediction of different types of liver diseases using rule based classification model. Kumar Y; Sahoo G Technol Health Care; 2013; 21(5):417-32. PubMed ID: 23963359 [TBL] [Abstract][Full Text] [Related]
16. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154 [TBL] [Abstract][Full Text] [Related]
17. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets. Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673 [TBL] [Abstract][Full Text] [Related]
18. Comparing different supervised machine learning algorithms for disease prediction. Uddin S; Khan A; Hossain ME; Moni MA BMC Med Inform Decis Mak; 2019 Dec; 19(1):281. PubMed ID: 31864346 [TBL] [Abstract][Full Text] [Related]
19. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction. Chen B; Chen C; Hu J; Sayeed Z; Qi J; Darwiche HF; Little BE; Lou S; Darwish M; Foote C; Palacio-Lascano C Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298311 [TBL] [Abstract][Full Text] [Related]