These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30665638)

  • 1. Maghemite (γ-Fe
    Chen Z; Zhang Y; Luo Q; Wang L; Liu S; Peng Y; Wang H; Shen L; Li Q; Wang Y
    J Environ Sci (China); 2019 Apr; 78():193-203. PubMed ID: 30665638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens.
    Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR
    Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary Mineralization of Ferrihydrite Affects Microbial Methanogenesis in Geobacter-Methanosarcina Cocultures.
    Tang J; Zhuang L; Ma J; Tang Z; Yu Z; Zhou S
    Appl Environ Microbiol; 2016 Oct; 82(19):5869-77. PubMed ID: 27451453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of biomass, electron shuttles, and ferrous iron in the kinetics of Geobacter sulfurreducens-mediated ferrihydrite reduction.
    MacDonald LH; Moon HS; Jaffé PR
    Water Res; 2011 Jan; 45(3):1049-62. PubMed ID: 21111440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles.
    Maithreepala RA; Doong RA
    J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions.
    Maithreepala RA; Doong RA
    Chemosphere; 2008 Feb; 70(8):1405-13. PubMed ID: 17963818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization and redistribution process of As(V) during As(V)-bearing ferrihydrite reduction by Geobacter sulfurreducens under the influence of TiO
    Yi X; Huang S; Chang L; Wang Z; Wang Y
    J Hazard Mater; 2022 Feb; 423(Pt B):127178. PubMed ID: 34534805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II).
    Islam FS; Pederick RL; Gault AG; Adams LK; Polya DA; Charnock JM; Lloyd JR
    Appl Environ Microbiol; 2005 Dec; 71(12):8642-8. PubMed ID: 16332858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced dechlorination of carbon tetrachloride by Geobacter sulfurreducens in the presence of naturally occurring quinones and ferrihydrite.
    Doong RA; Lee CC; Lien CM
    Chemosphere; 2014 Feb; 97():54-63. PubMed ID: 24290294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular evidence for the adaptive evolution of Geobacter sulfurreducens to perform dissimilatory iron reduction in natural environments.
    Liu X; Ye Y; Xiao K; Rensing C; Zhou S
    Mol Microbiol; 2020 Apr; 113(4):783-793. PubMed ID: 31872462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima.
    Hu J; Guo H; Li J; Gan Q; Wang Y; Xing B
    Environ Pollut; 2017 Feb; 221():199-208. PubMed ID: 27916492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative transcriptomic insights into the mechanisms of electron transfer in Geobacter co-cultures with activated carbon and magnetite.
    Zheng S; Liu F; Li M; Xiao L; Wang O
    Sci China Life Sci; 2018 Jul; 61(7):787-798. PubMed ID: 29101585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous fixation of dissolved arsenite from flooded soil by cooperating ferrihydrite with Geobacter sulfurreducens.
    Wu J; Huang S; Su J; Yi X; Wang Y
    Chemosphere; 2023 Mar; 318():137965. PubMed ID: 36706815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XAS and XMCD evidence for species-dependent partitioning of arsenic during microbial reduction of ferrihydrite to magnetite.
    Coker VS; Gault AG; Pearce CI; van der Laan G; Telling ND; Charnock JM; Polya DA; Lloyd JR
    Environ Sci Technol; 2006 Dec; 40(24):7745-50. PubMed ID: 17256522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals.
    Kato S; Nakamura R; Kai F; Watanabe K; Hashimoto K
    Environ Microbiol; 2010 Dec; 12(12):3114-23. PubMed ID: 20561016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ measurement of Fe(III) reduction activity of Geobacter pelophilus by simultaneous in situ RT-PCR and XPS analysis.
    Neal AL; Clough LK; Perkins TD; Little BJ; Magnuson TS
    FEMS Microbiol Ecol; 2004 Jul; 49(1):163-9. PubMed ID: 19712394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-driven microbial dissimilatory electron transfer to hematite.
    Li DB; Cheng YY; Li LL; Li WW; Huang YX; Pei DN; Tong ZH; Mu Y; Yu HQ
    Phys Chem Chem Phys; 2014 Nov; 16(42):23003-11. PubMed ID: 25238285
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Ueki T; Nevin KP; Rotaru AE; Wang LY; Ward JE; Woodard TL; Lovley DR
    mBio; 2018 Jul; 9(4):. PubMed ID: 29991583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.).
    Li J; Hu J; Ma C; Wang Y; Wu C; Huang J; Xing B
    Chemosphere; 2016 Sep; 159():326-334. PubMed ID: 27314633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: Effects of particle morphology on accumulation, elimination, hematology and immune responses.
    Ates M; Demir V; Arslan Z; Kaya H; Yılmaz S; Camas M
    Aquat Toxicol; 2016 Aug; 177():22-32. PubMed ID: 27232508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.