These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 30665831)

  • 1. Development and Validation of a Machine Learning Algorithm After Primary Total Hip Arthroplasty: Applications to Length of Stay and Payment Models.
    Ramkumar PN; Navarro SM; Haeberle HS; Karnuta JM; Mont MA; Iannotti JP; Patterson BM; Krebs VE
    J Arthroplasty; 2019 Apr; 34(4):632-637. PubMed ID: 30665831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning and Primary Total Knee Arthroplasty: Patient Forecasting for a Patient-Specific Payment Model.
    Navarro SM; Wang EY; Haeberle HS; Mont MA; Krebs VE; Patterson BM; Ramkumar PN
    J Arthroplasty; 2018 Dec; 33(12):3617-3623. PubMed ID: 30243882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preoperative Prediction of Value Metrics and a Patient-Specific Payment Model for Primary Total Hip Arthroplasty: Development and Validation of a Deep Learning Model.
    Ramkumar PN; Karnuta JM; Navarro SM; Haeberle HS; Iorio R; Mont MA; Patterson BM; Krebs VE
    J Arthroplasty; 2019 Oct; 34(10):2228-2234.e1. PubMed ID: 31122849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Preoperatively Predicts Value Metrics for Primary Total Knee Arthroplasty: Development and Validation of an Artificial Neural Network Model.
    Ramkumar PN; Karnuta JM; Navarro SM; Haeberle HS; Scuderi GR; Mont MA; Krebs VE; Patterson BM
    J Arthroplasty; 2019 Oct; 34(10):2220-2227.e1. PubMed ID: 31285089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can a machine learning model accurately predict patient resource utilization following lumbar spinal fusion?
    Karnuta JM; Golubovsky JL; Haeberle HS; Rajan PV; Navarro SM; Kamath AF; Schaffer JL; Krebs VE; Pelle DW; Ramkumar PN
    Spine J; 2020 Mar; 20(3):329-336. PubMed ID: 31654809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bundled Care for Hip Fractures: A Machine-Learning Approach to an Untenable Patient-Specific Payment Model.
    Karnuta JM; Navarro SM; Haeberle HS; Billow DG; Krebs VE; Ramkumar PN
    J Orthop Trauma; 2019 Jul; 33(7):324-330. PubMed ID: 30730360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The value of artificial neural networks for predicting length of stay, discharge disposition, and inpatient costs after anatomic and reverse shoulder arthroplasty.
    Karnuta JM; Churchill JL; Haeberle HS; Nwachukwu BU; Taylor SA; Ricchetti ET; Ramkumar PN
    J Shoulder Elbow Surg; 2020 Nov; 29(11):2385-2394. PubMed ID: 32713541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Inpatient Payments Prior to Lower Extremity Arthroplasty Using Deep Learning: Which Model Architecture Is Best?
    Karnuta JM; Navarro SM; Haeberle HS; Helm JM; Kamath AF; Schaffer JL; Krebs VE; Ramkumar PN
    J Arthroplasty; 2019 Oct; 34(10):2235-2241.e1. PubMed ID: 31230954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construct validation of machine learning in the prediction of short-term postoperative complications following total shoulder arthroplasty.
    Gowd AK; Agarwalla A; Amin NH; Romeo AA; Nicholson GP; Verma NN; Liu JN
    J Shoulder Elbow Surg; 2019 Dec; 28(12):e410-e421. PubMed ID: 31383411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The utility of machine learning algorithms for the prediction of patient-reported outcome measures following primary hip and knee total joint arthroplasty.
    Klemt C; Uzosike AC; Esposito JG; Harvey MJ; Yeo I; Subih M; Kwon YM
    Arch Orthop Trauma Surg; 2023 Apr; 143(4):2235-2245. PubMed ID: 35767040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative Payment Models Should Risk-Adjust for Conversion Total Hip Arthroplasty: A Propensity Score-Matched Study.
    McLawhorn AS; Schairer WW; Schwarzkopf R; Halsey DA; Iorio R; Padgett DE
    J Arthroplasty; 2018 Jul; 33(7):2025-2030. PubMed ID: 29275113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influence of Modifiable, Postoperative Patient Variables on the Length of Stay After Total Hip Arthroplasty.
    Farley KX; Anastasio AT; Premkumar A; Boden SD; Gottschalk MB; Bradbury TL
    J Arthroplasty; 2019 May; 34(5):901-906. PubMed ID: 30691932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of the Ability of Machine Learning Models in Predicting In-hospital Postoperative Outcomes After Total Hip Arthroplasty.
    El-Othmani MM; Zalikha AK; Shah RP
    J Am Acad Orthop Surg; 2022 Oct; 30(20):e1337-e1347. PubMed ID: 35947826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Models Based on a National-Scale Cohort Identify Patients at High Risk for Prolonged Lengths of Stay Following Primary Total Hip Arthroplasty.
    Chen TL; Buddhiraju A; Costales TG; Subih MA; Seo HH; Kwon YM
    J Arthroplasty; 2023 Oct; 38(10):1967-1972. PubMed ID: 37315634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Machine Learning on Total Joint Arthroplasty Patient Outcomes: A Systemic Review.
    Karlin EA; Lin CC; Meftah M; Slover JD; Schwarzkopf R
    J Arthroplasty; 2023 Oct; 38(10):2085-2095. PubMed ID: 36441039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Frank Stinchfield Award : Total Hip Arthroplasty for Femoral Neck Fracture Is Not a Typical DRG 470: A Propensity-matched Cohort Study.
    Schairer WW; Lane JM; Halsey DA; Iorio R; Padgett DE; McLawhorn AS
    Clin Orthop Relat Res; 2017 Feb; 475(2):353-360. PubMed ID: 27154530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine-learning vs. logistic regression for preoperative prediction of medical morbidity after fast-track hip and knee arthroplasty-a comparative study.
    Michelsen C; Jørgensen CC; Heltberg M; Jensen MH; Lucchetti A; Petersen PB; Petersen T; Kehlet H; ; Madsen F; Hansen TB; Gromov K; Jakobsen T; Varnum C; Overgaard S; Rathsach M; Hansen L
    BMC Anesthesiol; 2023 Nov; 23(1):391. PubMed ID: 38030979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Predictive Model for Determining Patients Not Requiring Prolonged Hospital Length of Stay After Elective Primary Total Hip Arthroplasty.
    Gabriel RA; Sharma BS; Doan CN; Jiang X; Schmidt UH; Vaida F
    Anesth Analg; 2019 Jul; 129(1):43-50. PubMed ID: 30234533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Should All Patients Be Included in Alternative Payment Models for Primary Total Hip Arthroplasty and Total Knee Arthroplasty?
    Rozell JC; Courtney PM; Dattilo JR; Wu CH; Lee GC
    J Arthroplasty; 2016 Sep; 31(9 Suppl):45-9. PubMed ID: 27118348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Analysis of Centers for Medicare & Medicaid Service Payment in Maryland: Can a Global Budget Revenue Model Save Money in Lower Extremity Arthroplasty?
    Delanois RE; Gwam CU; Cherian JJ; Etcheson JI; Dávila Castrodad IM; Spindler KP; Mont MA
    J Arthroplasty; 2019 Feb; 34(2):201-205. PubMed ID: 30389256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.