These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 30666051)
1. Reply to Reimann et al. Clarke LE; Leachman SA Mod Pathol; 2019 May; 32(5):725-727. PubMed ID: 30666051 [No Abstract] [Full Text] [Related]
2. Precise localization on chromosome 12 of the ATF-1 gene by fluorescence in situ hybridization. Desmaze C; Zucman J; Delattre O; Melot T; Thomas G; Aurias A Hum Genet; 1994 Feb; 93(2):207-8. PubMed ID: 8112749 [TBL] [Abstract][Full Text] [Related]
3. In reply to Vergier et al: fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases. Kittler H Mod Pathol; 2012 Aug; 25(8):1176; author reply 1176-7. PubMed ID: 22850586 [No Abstract] [Full Text] [Related]
4. EGFR in melanoma: clinical significance and potential therapeutic target. Boone B; Jacobs K; Ferdinande L; Taildeman J; Lambert J; Peeters M; Bracke M; Pauwels P; Brochez L J Cutan Pathol; 2011 Jun; 38(6):492-502. PubMed ID: 21352258 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of chromogenic in situ hybridization for the determination of monosomy 3 in uveal melanoma. Gleeson G; Larkin A; Horgan N; Kennedy S Arch Pathol Lab Med; 2014 May; 138(5):664-70. PubMed ID: 24786124 [TBL] [Abstract][Full Text] [Related]
6. Integrating clinical/dermatoscopic findings and fluorescence in situ hybridization in diagnosing melanocytic neoplasms with less than definitive histopathologic features. Nardone B; Martini M; Busam K; Marghoob A; West DP; Gerami P J Am Acad Dermatol; 2012 Jun; 66(6):917-22. PubMed ID: 21962759 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence in situ hybridization for distinguishing nevoid melanomas from mitotically active nevi. Gerami P; Wass A; Mafee M; Fang Y; Pulitzer MP; Busam KJ Am J Surg Pathol; 2009 Dec; 33(12):1783-8. PubMed ID: 19809275 [TBL] [Abstract][Full Text] [Related]
8. Diagnostic application of cyclin D1 fluorescent in situ hybridization for histologically undetermined early lesions of acral melanoma in situ: A case series. Cho-Vega JH; Cao T; Ledon J; Moller M; Avisar E; Elgart G; Tan JH; Fan YS; Grichnik JM Ann Diagn Pathol; 2021 Feb; 50():151681. PubMed ID: 33341705 [TBL] [Abstract][Full Text] [Related]
9. Update on fluorescence in situ hybridization in melanoma: state of the art. Gerami P; Zembowicz A Arch Pathol Lab Med; 2011 Jul; 135(7):830-7. PubMed ID: 21732770 [TBL] [Abstract][Full Text] [Related]
10. [Fluorescence in-situ hybridization as a diagnostic tool for cutaneous melanoma]. Su J; Liu J; Zheng J; You J; Ma X; Zhang Y; Zhang J; Liao S Zhonghua Bing Li Xue Za Zhi; 2015 Jan; 44(1):37-41. PubMed ID: 25765029 [TBL] [Abstract][Full Text] [Related]
11. Comparison between melanoma gene expression score and fluorescence in situ hybridization for the classification of melanocytic lesions. Minca EC; Al-Rohil RN; Wang M; Harms PW; Ko JS; Collie AM; Kovalyshyn I; Prieto VG; Tetzlaff MT; Billings SD; Andea AA Mod Pathol; 2016 Aug; 29(8):832-43. PubMed ID: 27174586 [TBL] [Abstract][Full Text] [Related]
12. Gene-specific fluorescence in-situ hybridization analysis on tissue microarray to refine the region of chromosome 20q amplification in melanoma. Koynova DK; Jordanova ES; Milev AD; Dijkman R; Kirov KS; Toncheva DI; Gruis NA Melanoma Res; 2007 Feb; 17(1):37-41. PubMed ID: 17235240 [TBL] [Abstract][Full Text] [Related]
13. Detection of Genetic Aberrations in the Assessment and Prognosis of Melanoma. High WA Dermatol Clin; 2017 Oct; 35(4):525-536. PubMed ID: 28886809 [TBL] [Abstract][Full Text] [Related]
14. Detection of copy number alterations in metastatic melanoma by a DNA fluorescence in situ hybridization probe panel and array comparative genomic hybridization: a southwest oncology group study (S9431). Moore SR; Persons DL; Sosman JA; Bobadilla D; Bedell V; Smith DD; Wolman SR; Tuthill RJ; Moon J; Sondak VK; Slovak ML Clin Cancer Res; 2008 May; 14(10):2927-35. PubMed ID: 18483359 [TBL] [Abstract][Full Text] [Related]
15. Four-color fluorescence in-situ hybridization is useful to assist to distinguish early stage acral and cutaneous melanomas from dysplastic junctional or compound nevus. Lai Y; Wu Y; Liu R; Lu A; Zhou L; Jia L; Diao X; Li Z Diagn Pathol; 2020 May; 15(1):51. PubMed ID: 32393283 [TBL] [Abstract][Full Text] [Related]
16. Dual-color, break-apart fluorescence in situ hybridization for EWS gene rearrangement distinguishes clear cell sarcoma of soft tissue from malignant melanoma. Patel RM; Downs-Kelly E; Weiss SW; Folpe AL; Tubbs RR; Tuthill RJ; Goldblum JR; Skacel M Mod Pathol; 2005 Dec; 18(12):1585-90. PubMed ID: 16258500 [TBL] [Abstract][Full Text] [Related]
17. Blue Nevus-Like Metastasis of a Cutaneous Melanoma Identified by Fluorescence In Situ Hybridization. Campa M; Patel M; Aubert P; Hosler G; Witheiler D Am J Dermatopathol; 2016 Sep; 38(9):695-7. PubMed ID: 27097332 [TBL] [Abstract][Full Text] [Related]
18. A protocol for whole-mount immuno-coupled hybridization chain reaction (WICHCR) in zebrafish embryos and larvae. Ibarra-GarcĂa-Padilla R; Howard AGA; Singleton EW; Uribe RA STAR Protoc; 2021 Sep; 2(3):100709. PubMed ID: 34401776 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence in situ detection of human cutaneous melanoma: study of diagnostic parameters of the method. Chwirot BW; Chwirot S; Sypniewska N; Michniewicz Z; Redzinski J; Kurzawski G; Ruka W J Invest Dermatol; 2001 Dec; 117(6):1449-51. PubMed ID: 11886507 [TBL] [Abstract][Full Text] [Related]
20. Through the looking glass and what you find there: making sense of comparative genomic hybridization and fluorescence in situ hybridization for melanoma diagnosis. Miedema J; Andea AA Mod Pathol; 2020 Jul; 33(7):1318-1330. PubMed ID: 32066861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]