These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30666180)

  • 1. Corrigendum: Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain.
    Thakur CS; Molin JL; Cauwenberghs G; Indiveri G; Kumar K; Qiao N; Schemmel J; Wang R; Chicca E; Hasler JO; Seo JS; Yu S; Cao Y; van Schaik A; Etienne-Cummings R
    Front Neurosci; 2018; 12():991. PubMed ID: 30666180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain.
    Thakur CS; Molin JL; Cauwenberghs G; Indiveri G; Kumar K; Qiao N; Schemmel J; Wang R; Chicca E; Olson Hasler J; Seo JS; Yu S; Cao Y; van Schaik A; Etienne-Cummings R
    Front Neurosci; 2018; 12():891. PubMed ID: 30559644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromorphic Analog Implementation of Neural Engineering Framework-Inspired Spiking Neuron for High-Dimensional Representation.
    Hazan A; Ezra Tsur E
    Front Neurosci; 2021; 15():627221. PubMed ID: 33692670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrigendum: Mapping and validating a point neuron model on intel's neuromorphic hardware Loihi.
    Dey S; Dimitrov A
    Front Neuroinform; 2022; 16():1023486. PubMed ID: 36187877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum: A Brain-Inspired Theory of Mind Spiking Neural Network for Reducing Safety Risks of Other Agents.
    Zhao Z; Lu E; Zhao F; Zeng Y; Zhao Y
    Front Neurosci; 2022; 16():920292. PubMed ID: 35669492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks.
    Kungl AF; Schmitt S; Klähn J; Müller P; Baumbach A; Dold D; Kugele A; Müller E; Koke C; Kleider M; Mauch C; Breitwieser O; Leng L; Gürtler N; Güttler M; Husmann D; Husmann K; Hartel A; Karasenko V; Grübl A; Schemmel J; Meier K; Petrovici MA
    Front Neurosci; 2019; 13():1201. PubMed ID: 31798400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
    Broccard FD; Joshi S; Wang J; Cauwenberghs G
    J Neural Eng; 2017 Aug; 14(4):041002. PubMed ID: 28573983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrigendum: Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.
    Werner T; Vianello E; Bichler O; Garbin D; Cattaert D; Yvert B; De Salvo B; Perniola L
    Front Neurosci; 2017; 11():486. PubMed ID: 28878617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brian2Loihi: An emulator for the neuromorphic chip Loihi using the spiking neural network simulator Brian.
    Michaelis C; Lehr AB; Oed W; Tetzlaff C
    Front Neuroinform; 2022; 16():1015624. PubMed ID: 36439945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale neuromorphic computing systems.
    Furber S
    J Neural Eng; 2016 Oct; 13(5):051001. PubMed ID: 27529195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
    Milde MB; Blum H; Dietmüller A; Sumislawska D; Conradt J; Indiveri G; Sandamirskaya Y
    Front Neurorobot; 2017; 11():28. PubMed ID: 28747883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrigendum: SCTN: event-based object tracking with energy-efficient deep convolutional spiking neural networks.
    Ji M; Wang Z; Yan R; Liu Q; Xu S; Tang H
    Front Neurosci; 2023; 17():1204334. PubMed ID: 37260839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging neuromorphic devices.
    Ielmini D; Ambrogio S
    Nanotechnology; 2020 Feb; 31(9):092001. PubMed ID: 31698347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Neuromorphic Event-Based Neural Recording System for Smart Brain-Machine-Interfaces.
    Corradi F; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):699-709. PubMed ID: 26513801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing.
    Wang R; Shi T; Zhang X; Wang W; Wei J; Lu J; Zhao X; Wu Z; Cao R; Long S; Liu Q; Liu M
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization.
    Cassidy AS; Georgiou J; Andreou AG
    Neural Netw; 2013 Sep; 45():4-26. PubMed ID: 23886551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrigendum: Understanding the effects of cortical gyrification in tACS: insights from experiments and computational models.
    Cabrera-Álvarez J; Sánchez-Claros J; Carrasco-Gómez M; Del Cerro-León A; Gómez-Ariza CJ; Maestú F; Mirasso CR; Susi G
    Front Neurosci; 2023; 17():1329826. PubMed ID: 38046655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.