These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 30666423)
1. A fluorescent probe composed of quantum dot labeled aptamer and graphene oxide for the determination of the lipopolysaccharide endotoxin. Wen LX; Lv JJ; Chen L; Li SB; Mou XJ; Xu Y Mikrochim Acta; 2019 Jan; 186(2):122. PubMed ID: 30666423 [TBL] [Abstract][Full Text] [Related]
2. Aptamer-based cocaine assay using a nanohybrid composed of ZnS/Ag Adegoke O; Pereira-Barros MA; Zolotovskaya S; Abdolvand A; Daeid NN Mikrochim Acta; 2020 Jan; 187(2):104. PubMed ID: 31912290 [TBL] [Abstract][Full Text] [Related]
3. Graphene Oxide Quantum Dots Assisted Construction of Fluorescent Aptasensor for Rapid Detection of Pseudomonas aeruginosa in Food Samples. Gao R; Zhong Z; Gao X; Jia L J Agric Food Chem; 2018 Oct; 66(41):10898-10905. PubMed ID: 30247907 [TBL] [Abstract][Full Text] [Related]
4. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M; Mirroshandel AA Biosens Bioelectron; 2017 Oct; 96():324-331. PubMed ID: 28525850 [TBL] [Abstract][Full Text] [Related]
5. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide. Zhou ZM; Zhou J; Chen J; Yu RN; Zhang MZ; Song JT; Zhao YD Biosens Bioelectron; 2014 Sep; 59():397-403. PubMed ID: 24768819 [TBL] [Abstract][Full Text] [Related]
6. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO. Sun X; Liu B; Yang C; Li C Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():288-93. PubMed ID: 24835931 [TBL] [Abstract][Full Text] [Related]
7. Fluorometric determination of lipopolysaccharides via changes of the graphene oxide-enhanced fluorescence polarization caused by truncated aptamers. Ye H; Duan N; Gu H; Wang H; Wang Z Mikrochim Acta; 2019 Feb; 186(3):173. PubMed ID: 30771102 [TBL] [Abstract][Full Text] [Related]
8. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Chinnappan R; AlAmer S; Eissa S; Rahamn AA; Abu Salah KM; Zourob M Mikrochim Acta; 2017 Dec; 185(1):61. PubMed ID: 29594712 [TBL] [Abstract][Full Text] [Related]
9. Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Lim SK; Chen P; Lee FL; Moochhala S; Liedberg B Anal Chem; 2015 Sep; 87(18):9408-12. PubMed ID: 26303386 [TBL] [Abstract][Full Text] [Related]
10. Signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. Luo J; Shen X; Li B; Li X; Zhou X Mikrochim Acta; 2018 Jul; 185(8):392. PubMed ID: 30056590 [TBL] [Abstract][Full Text] [Related]
11. Detection of lead (II) with a "turn-on" fluorescent biosensor based on energy transfer from CdSe/ZnS quantum dots to graphene oxide. Li M; Zhou X; Guo S; Wu N Biosens Bioelectron; 2013 May; 43():69-74. PubMed ID: 23277342 [TBL] [Abstract][Full Text] [Related]
12. Femtomolar Detection of Lipopolysaccharide in Injectables and Serum Samples Using Aptamer-Coupled Reduced Graphene Oxide in a Continuous Injection-Electrostacking Biochip. Niu J; Hu X; Ouyang W; Chen Y; Liu S; Han J; Liu L Anal Chem; 2019 Feb; 91(3):2360-2367. PubMed ID: 30576605 [TBL] [Abstract][Full Text] [Related]
13. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection. Weng X; Neethirajan S Biosens Bioelectron; 2016 Nov; 85():649-656. PubMed ID: 27240012 [TBL] [Abstract][Full Text] [Related]
14. Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins. Gu H; Hao L; Ye H; Ma P; Wang Z Mikrochim Acta; 2021 Mar; 188(4):118. PubMed ID: 33687572 [TBL] [Abstract][Full Text] [Related]
15. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity. Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082 [TBL] [Abstract][Full Text] [Related]
16. An aptamer-based four-color fluorometic method for simultaneous determination and imaging of alpha-fetoprotein, vascular endothelial growth factor-165, carcinoembryonic antigen and human epidermal growth factor receptor 2 in living cells. Xu J; Chen W; Shi M; Huang Y; Fang L; Zhao S; Yao L; Liang H Mikrochim Acta; 2019 Feb; 186(3):204. PubMed ID: 30796534 [TBL] [Abstract][Full Text] [Related]
17. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon. Arvand M; Mirroshandel AA Food Chem; 2019 May; 280():115-122. PubMed ID: 30642476 [TBL] [Abstract][Full Text] [Related]
18. Green fluorescent carbon quantum dots functionalized with polyethyleneimine, and their application to aptamer-based determination of thrombin and ATP. Guo Y; Zhang J; Zhang W; Hu D Mikrochim Acta; 2019 Oct; 186(11):717. PubMed ID: 31654277 [TBL] [Abstract][Full Text] [Related]
19. A novel fluorescent "turn-on" aptasensor based on nitrogen-doped graphene quantum dots and hexagonal cobalt oxyhydroxide nanoflakes to detect tetracycline. Zhang L; Wang J; Deng J; Wang S Anal Bioanal Chem; 2020 Feb; 412(6):1343-1351. PubMed ID: 31901961 [TBL] [Abstract][Full Text] [Related]
20. A fluorometric turn-on aptasensor for mucin 1 based on signal amplification via a hybridization chain reaction and the interaction between a luminescent ruthenium(II) complex and CdZnTeS quantum dots. Li Z; Mao G; Du M; Tian S; Niu L; Ji X; He Z Mikrochim Acta; 2019 Mar; 186(4):233. PubMed ID: 30852673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]