These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 30666602)
1. Establishment of Two Dimensional (2D) and Three-Dimensional (3D) Melanoma Primary Cultures as a Tool for In Vitro Drug Resistance Studies. Cruz Rodríguez N; Lineros J; Rodríguez CS; Martínez LM; Rodríguez JA Methods Mol Biol; 2019; 1913():119-131. PubMed ID: 30666602 [TBL] [Abstract][Full Text] [Related]
2. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing. Vörsmann H; Groeber F; Walles H; Busch S; Beissert S; Walczak H; Kulms D Cell Death Dis; 2013 Jul; 4(7):e719. PubMed ID: 23846221 [TBL] [Abstract][Full Text] [Related]
3. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. de Villiers M; Kotzé AF; du Plessis LH Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39025118 [TBL] [Abstract][Full Text] [Related]
4. Cytotoxic and molecular differences of anticancer agents on 2D and 3D cell culture. Alwahsh M; Al-Doridee A; Jasim S; Awwad O; Hergenröder R; Hamadneh L Mol Biol Rep; 2024 Jun; 51(1):721. PubMed ID: 38829450 [TBL] [Abstract][Full Text] [Related]
5. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Mulholland T; McAllister M; Patek S; Flint D; Underwood M; Sim A; Edwards J; Zagnoni M Sci Rep; 2018 Oct; 8(1):14672. PubMed ID: 30279484 [TBL] [Abstract][Full Text] [Related]
6. Design of human lactoferricin derived antitumor peptides-activity and specificity against malignant melanoma in 2D and 3D model studies. Grissenberger S; Riedl S; Rinner B; Leber R; Zweytick D Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183264. PubMed ID: 32151609 [TBL] [Abstract][Full Text] [Related]
7. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018 [TBL] [Abstract][Full Text] [Related]
8. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development. Bourland J; Fradette J; Auger FA Sci Rep; 2018 Sep; 8(1):13191. PubMed ID: 30181613 [TBL] [Abstract][Full Text] [Related]
9. PEG-peptide hydrogels reveal differential effects of matrix microenvironmental cues on melanoma drug sensitivity. Tokuda EY; Jones CE; Anseth KS Integr Biol (Camb); 2017 Jan; 9(1):76-87. PubMed ID: 28001152 [TBL] [Abstract][Full Text] [Related]
10. Fibroblasts protect melanoma cells from the cytotoxic effects of doxorubicin. Tiago M; de Oliveira EM; Brohem CA; Pennacchi PC; Paes RD; Haga RB; Campa A; de Moraes Barros SB; Smalley KS; Maria-Engler SS Tissue Eng Part A; 2014 Sep; 20(17-18):2412-21. PubMed ID: 24548268 [TBL] [Abstract][Full Text] [Related]
11. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration. Osswald A; Hedrich V; Sommergruber W Methods Mol Biol; 2019; 1953():151-162. PubMed ID: 30912021 [TBL] [Abstract][Full Text] [Related]
12. 3D modeling in cancer studies. Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery. Fontana F; Raimondi M; Marzagalli M; Sommariva M; Gagliano N; Limonta P Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32948069 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional culture models to study drug resistance in breast cancer. Fisher MF; Rao SS Biotechnol Bioeng; 2020 Jul; 117(7):2262-2278. PubMed ID: 32297971 [TBL] [Abstract][Full Text] [Related]
15. Chemo-sensitivity of Two-dimensional Monolayer and Three-dimensional Spheroid of Breast Cancer MCF-7 Cells to Daunorubicin, Docetaxel, and Arsenic Disulfide. Uematsu N; Zhao Y; Kiyomi A; Yuan BO; Onda K; Tanaka S; Sugiyama K; Sugiura M; Takagi N; Hayakawa A; Hirano T Anticancer Res; 2018 Apr; 38(4):2101-2108. PubMed ID: 29599328 [TBL] [Abstract][Full Text] [Related]
16. Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models. Schäfer MEA; Klicks J; Hafner M; Rudolf R Methods Mol Biol; 2021; 2265():173-183. PubMed ID: 33704714 [TBL] [Abstract][Full Text] [Related]
17. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery. Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653 [TBL] [Abstract][Full Text] [Related]
18. Pathophysiologically relevant in vitro tumor models for drug screening. Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576 [TBL] [Abstract][Full Text] [Related]
19. Spheroid Culture Differentially Affects Cancer Cell Sensitivity to Drugs in Melanoma and RCC Models. Filipiak-Duliban A; Brodaczewska K; Kajdasz A; Kieda C Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163092 [TBL] [Abstract][Full Text] [Related]
20. Does the gastrointestinal microbiome contribute to the 'obesity paradox' in melanoma survival? Langan EA; Grätz V; Billmann F; Zillikens D; Terheyden P Br J Dermatol; 2018 Jul; 179(1):225-226. PubMed ID: 29663324 [No Abstract] [Full Text] [Related] [Next] [New Search]