BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30666602)

  • 1. Establishment of Two Dimensional (2D) and Three-Dimensional (3D) Melanoma Primary Cultures as a Tool for In Vitro Drug Resistance Studies.
    Cruz Rodríguez N; Lineros J; Rodríguez CS; Martínez LM; Rodríguez JA
    Methods Mol Biol; 2019; 1913():119-131. PubMed ID: 30666602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a human three-dimensional organotypic skin-melanoma spheroid model for in vitro drug testing.
    Vörsmann H; Groeber F; Walles H; Busch S; Beissert S; Walczak H; Kulms D
    Cell Death Dis; 2013 Jul; 4(7):e719. PubMed ID: 23846221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient.
    Mulholland T; McAllister M; Patek S; Flint D; Underwood M; Sim A; Edwards J; Zagnoni M
    Sci Rep; 2018 Oct; 8(1):14672. PubMed ID: 30279484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of human lactoferricin derived antitumor peptides-activity and specificity against malignant melanoma in 2D and 3D model studies.
    Grissenberger S; Riedl S; Rinner B; Leber R; Zweytick D
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183264. PubMed ID: 32151609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development.
    Bourland J; Fradette J; Auger FA
    Sci Rep; 2018 Sep; 8(1):13191. PubMed ID: 30181613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEG-peptide hydrogels reveal differential effects of matrix microenvironmental cues on melanoma drug sensitivity.
    Tokuda EY; Jones CE; Anseth KS
    Integr Biol (Camb); 2017 Jan; 9(1):76-87. PubMed ID: 28001152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Cell Cultures as an In Vitro Tool for Prostate Cancer Modeling and Drug Discovery.
    Fontana F; Raimondi M; Marzagalli M; Sommariva M; Gagliano N; Limonta P
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32948069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroblasts protect melanoma cells from the cytotoxic effects of doxorubicin.
    Tiago M; de Oliveira EM; Brohem CA; Pennacchi PC; Paes RD; Haga RB; Campa A; de Moraes Barros SB; Smalley KS; Maria-Engler SS
    Tissue Eng Part A; 2014 Sep; 20(17-18):2412-21. PubMed ID: 24548268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-3 Tumor Models in Drug Discovery for Analysis of Immune Cell Infiltration.
    Osswald A; Hedrich V; Sommergruber W
    Methods Mol Biol; 2019; 1953():151-162. PubMed ID: 30912021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D modeling in cancer studies.
    Atat OE; Farzaneh Z; Pourhamzeh M; Taki F; Abi-Habib R; Vosough M; El-Sibai M
    Hum Cell; 2022 Jan; 35(1):23-36. PubMed ID: 34761350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional culture models to study drug resistance in breast cancer.
    Fisher MF; Rao SS
    Biotechnol Bioeng; 2020 Jul; 117(7):2262-2278. PubMed ID: 32297971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemo-sensitivity of Two-dimensional Monolayer and Three-dimensional Spheroid of Breast Cancer MCF-7 Cells to Daunorubicin, Docetaxel, and Arsenic Disulfide.
    Uematsu N; Zhao Y; Kiyomi A; Yuan BO; Onda K; Tanaka S; Sugiyama K; Sugiura M; Takagi N; Hayakawa A; Hirano T
    Anticancer Res; 2018 Apr; 38(4):2101-2108. PubMed ID: 29599328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation, Drug Treatment, and Immunohistological Analysis of Tri-Culture Spheroid 3D Melanoma-Like Models.
    Schäfer MEA; Klicks J; Hafner M; Rudolf R
    Methods Mol Biol; 2021; 2265():173-183. PubMed ID: 33704714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics Enabled Bottom-Up Engineering of 3D Vascularized Tumor for Drug Discovery.
    Agarwal P; Wang H; Sun M; Xu J; Zhao S; Liu Z; Gooch KJ; Zhao Y; Lu X; He X
    ACS Nano; 2017 Jul; 11(7):6691-6702. PubMed ID: 28614653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spheroid Culture Differentially Affects Cancer Cell Sensitivity to Drugs in Melanoma and RCC Models.
    Filipiak-Duliban A; Brodaczewska K; Kajdasz A; Kieda C
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the gastrointestinal microbiome contribute to the 'obesity paradox' in melanoma survival?
    Langan EA; Grätz V; Billmann F; Zillikens D; Terheyden P
    Br J Dermatol; 2018 Jul; 179(1):225-226. PubMed ID: 29663324
    [No Abstract]   [Full Text] [Related]  

  • 19. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance.
    Breslin S; O'Driscoll L
    Oncotarget; 2016 Jul; 7(29):45745-45756. PubMed ID: 27304190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer.
    Imamura Y; Mukohara T; Shimono Y; Funakoshi Y; Chayahara N; Toyoda M; Kiyota N; Takao S; Kono S; Nakatsura T; Minami H
    Oncol Rep; 2015 Apr; 33(4):1837-43. PubMed ID: 25634491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.