These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30666698)

  • 1. Incorporation of a spectral model in a convolutional neural network for accelerated spectral fitting.
    Gurbani SS; Sheriff S; Maudsley AA; Shim H; Cooper LAD
    Magn Reson Med; 2019 May; 81(5):3346-3357. PubMed ID: 30666698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A convolutional neural network to filter artifacts in spectroscopic MRI.
    Gurbani SS; Schreibmann E; Maudsley AA; Cordova JS; Soher BJ; Poptani H; Verma G; Barker PB; Shim H; Cooper LAD
    Magn Reson Med; 2018 Nov; 80(5):1765-1775. PubMed ID: 29520831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-informed deep learning approach to quantification of human brain metabolites from magnetic resonance spectroscopy data.
    Shamaei A; Starcukova J; Starcuk Z
    Comput Biol Med; 2023 May; 158():106837. PubMed ID: 37044049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lesion segmentation for MR spectroscopic imaging using the convolution difference method.
    Maudsley AA
    Magn Reson Med; 2019 Mar; 81(3):1499-1510. PubMed ID: 30303564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volumetric multishot echo-planar spectroscopic imaging.
    Tyszka JM; Mamelak AN
    Magn Reson Med; 2001 Aug; 46(2):219-27. PubMed ID: 11477624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of reduced k-space acquisition on pathologic detectability for volumetric MR spectroscopic imaging.
    Sabati M; Zhan J; Govind V; Arheart KL; Maudsley AA
    J Magn Reson Imaging; 2014 Jan; 39(1):224-34. PubMed ID: 23559504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral decomposition for resolving partial volume effects in MRSI.
    Goryawala MZ; Sheriff S; Stoyanova R; Maudsley AA
    Magn Reson Med; 2018 Jun; 79(6):2886-2895. PubMed ID: 29130515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral resolution amelioration by deconvolution (SPREAD) in MR spectroscopic imaging.
    Dong Z; Peterson BS
    J Magn Reson Imaging; 2009 Jun; 29(6):1395-405. PubMed ID: 19472414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast magnetic resonance spectroscopic imaging using SPICE with learned subspaces.
    Lam F; Li Y; Guo R; Clifford B; Liang ZP
    Magn Reson Med; 2020 Feb; 83(2):377-390. PubMed ID: 31483526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An expert system for brain tumor detection: Fuzzy C-means with super resolution and convolutional neural network with extreme learning machine.
    Özyurt F; Sert E; Avcı D
    Med Hypotheses; 2020 Jan; 134():109433. PubMed ID: 31634769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short TE in vivo (1)H MR spectroscopic imaging at 1.5 T: acquisition and automated spectral analysis.
    Soher BJ; Vermathen P; Schuff N; Wiedermann D; Meyerhoff DJ; Weiner MW; Maudsley AA
    Magn Reson Imaging; 2000 Nov; 18(9):1159-65. PubMed ID: 11118771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of convolutional-neural-networks-based method and LCModel on the quantification of in vivo magnetic resonance spectroscopy.
    Huang YL; Lin YR; Tsai SY
    MAGMA; 2024 Jul; 37(3):477-489. PubMed ID: 37713007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
    Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H
    Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. k-Space deep learning for reference-free EPI ghost correction.
    Lee J; Han Y; Ryu JK; Park JY; Ye JC
    Magn Reson Med; 2019 Dec; 82(6):2299-2313. PubMed ID: 31321809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity-encoded (SENSE) proton echo-planar spectroscopic imaging (PEPSI) in the human brain.
    Lin FH; Tsai SY; Otazo R; Caprihan A; Wald LL; Belliveau JW; Posse S
    Magn Reson Med; 2007 Feb; 57(2):249-57. PubMed ID: 17260356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for glioblastoma segmentation using preoperative magnetic resonance imaging identifies volumetric features associated with survival.
    Wan Y; Rahmat R; Price SJ
    Acta Neurochir (Wien); 2020 Dec; 162(12):3067-3080. PubMed ID: 32662042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images.
    Zeineldin RA; Karar ME; Coburger J; Wirtz CR; Burgert O
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):909-920. PubMed ID: 32372386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution echo-planar spectroscopic imaging at ultra-high field.
    Coello E; Noeske R; Burns BL; Gordon JW; Jakary A; Menze B; Haase A; Larson PEZ; Li Y; Schulte RF
    NMR Biomed; 2018 Nov; 31(11):e3950. PubMed ID: 30052300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.