BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30666736)

  • 1. Loss of fumarylacetoacetate hydrolase causes light-dependent increases in protochlorophyllide and cell death in Arabidopsis.
    Zhi T; Zhou Z; Qiu B; Zhu Q; Xiong X; Ren C
    Plant J; 2019 May; 98(4):622-638. PubMed ID: 30666736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sugar suppresses cell death caused by disruption of fumarylacetoacetate hydrolase in Arabidopsis.
    Zhi T; Zhou Z; Huang Y; Han C; Liu Y; Zhu Q; Ren C
    Planta; 2016 Sep; 244(3):557-71. PubMed ID: 27097641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fumarylacetoacetate hydrolase is involved in salt stress response in Arabidopsis.
    Huang L; Hu C; Cai W; Zhu Q; Gao B; Zhang X; Ren C
    Planta; 2018 Aug; 248(2):499-511. PubMed ID: 29785518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of fumarylacetoacetate hydrolase causes spontaneous cell death under short-day conditions in Arabidopsis.
    Han C; Ren C; Zhi T; Zhou Z; Liu Y; Chen F; Peng W; Xie D
    Plant Physiol; 2013 Aug; 162(4):1956-64. PubMed ID: 23743712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell death resulted from loss of fumarylacetoacetate hydrolase in Arabidopsis is related to phytohormone jasmonate but not salicylic acid.
    Zhou Z; Zhi T; Han C; Peng Z; Wang R; Tong J; Zhu Q; Ren C
    Sci Rep; 2020 Aug; 10(1):13714. PubMed ID: 32792583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylalanine suppresses cell death caused by loss of fumarylacetoacetate hydrolase in Arabidopsis.
    Jiang Y; Zhu Q; Yang H; Zhi T; Ren C
    Sci Rep; 2022 Aug; 12(1):13546. PubMed ID: 35941360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GluTR2 complements a hema1 mutant lacking glutamyl-tRNA reductase 1, but is differently regulated at the post-translational level.
    Apitz J; Schmied J; Lehmann MJ; Hedtke B; Grimm B
    Plant Cell Physiol; 2014 Mar; 55(3):645-57. PubMed ID: 24449654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of NADPH:protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana.
    Armstrong GA; Runge S; Frick G; Sperling U; Apel K
    Plant Physiol; 1995 Aug; 108(4):1505-17. PubMed ID: 7659751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening.
    Zhao Y; Han Q; Ding C; Huang Y; Liao J; Chen T; Feng S; Zhou L; Zhang Z; Chen Y; Yuan S; Yuan M
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32092859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis.
    Xu G; Guo H; Zhang D; Chen D; Jiang Z; Lin R
    Photosynth Res; 2015 Dec; 126(2-3):331-40. PubMed ID: 25910753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monogalactosyldiacylglycerol Facilitates Synthesis of Photoactive Protochlorophyllide in Etioplasts.
    Fujii S; Kobayashi K; Nagata N; Masuda T; Wada H
    Plant Physiol; 2017 Aug; 174(4):2183-2198. PubMed ID: 28655777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent interactions of heme and FLU with Glu tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants.
    Goslings D; Meskauskiene R; Kim C; Lee KP; Nater M; Apel K
    Plant J; 2004 Dec; 40(6):957-67. PubMed ID: 15584960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct roles for light-dependent NADPH:protochlorophyllide oxidoreductases (POR) A and B during greening in higher plants.
    Runge S; Sperling U; Frick G; Apel K; Armstrong GA
    Plant J; 1996 Apr; 9(4):513-23. PubMed ID: 8624514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rice FLUORESCENT1 Is Involved in the Regulation of Chlorophyll.
    Li Z; Mo W; Jia L; Xu YC; Tang W; Yang W; Guo YL; Lin R
    Plant Cell Physiol; 2019 Oct; 60(10):2307-2318. PubMed ID: 31290959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of soldat8, a suppressor of singlet oxygen-induced cell death in Arabidopsis seedlings.
    Coll NS; Danon A; Meurer J; Cho WK; Apel K
    Plant Cell Physiol; 2009 Apr; 50(4):707-18. PubMed ID: 19273469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested.
    Frick G; Su Q; Apel K; Armstrong GA
    Plant J; 2003 Jul; 35(2):141-53. PubMed ID: 12848821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of HEMA1 encoding glutamyl-tRNA reductase.
    Schmied J; Hedtke B; Grimm B
    J Plant Physiol; 2011 Aug; 168(12):1372-9. PubMed ID: 21272955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi based simultaneous silencing of all forms of light-dependent NADPH:protochlorophyllide oxidoreductase genes result in the accumulation of protochlorophyllide in tobacco (Nicotiana tabacum).
    Talaat NB
    Plant Physiol Biochem; 2013 Oct; 71():31-6. PubMed ID: 23867601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo functional analysis of the structural domains of FLUORESCENT (FLU).
    Hou Z; Pang X; Hedtke B; Grimm B
    Plant J; 2021 Jul; 107(2):360-376. PubMed ID: 33901334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell growth defect factor1/chaperone-like protein of POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis.
    Lee JY; Lee HS; Song JY; Jung YJ; Reinbothe S; Park YI; Lee SY; Pai HS
    Plant Cell; 2013 Oct; 25(10):3944-60. PubMed ID: 24151298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.