BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 30666759)

  • 1. Glutamate hypothesis in schizophrenia.
    Uno Y; Coyle JT
    Psychiatry Clin Neurosci; 2019 May; 73(5):204-215. PubMed ID: 30666759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions.
    Javitt DC
    Int Rev Neurobiol; 2007; 78():69-108. PubMed ID: 17349858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of the D-serine pathway to schizophrenia.
    Labrie V; Wong AH; Roder JC
    Neuropharmacology; 2012 Mar; 62(3):1484-503. PubMed ID: 21295046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mismatch negativity: A simple and useful biomarker of N-methyl-d-aspartate receptor (NMDAR)-type glutamate dysfunction in schizophrenia.
    Avissar M; Javitt D
    Schizophr Res; 2018 Jan; 191():1-4. PubMed ID: 29132813
    [No Abstract]   [Full Text] [Related]  

  • 5. The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment.
    Balu DT
    Adv Pharmacol; 2016; 76():351-82. PubMed ID: 27288082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the glutamate system in humans: relevance to drug discovery for schizophrenia.
    Stone JM
    Curr Pharm Des; 2009; 15(22):2594-602. PubMed ID: 19689330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications.
    Gaspar PA; Bustamante ML; Silva H; Aboitiz F
    J Neurochem; 2009 Nov; 111(4):891-900. PubMed ID: 19686383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bringing order to the glutamate chaos in schizophrenia.
    Moghaddam B
    Neuron; 2003 Dec; 40(5):881-4. PubMed ID: 14659087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased levels of D-aspartate and NMDA in the prefrontal cortex and striatum of patients with schizophrenia.
    Errico F; Napolitano F; Squillace M; Vitucci D; Blasi G; de Bartolomeis A; Bertolino A; D'Aniello A; Usiello A
    J Psychiatr Res; 2013 Oct; 47(10):1432-7. PubMed ID: 23835041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Role of astrocytes in alterations of glutamatergic neurotransmission in schizophrenia].
    Kolomeets NS
    Zh Nevrol Psikhiatr Im S S Korsakova; 2015; 115(1):110-117. PubMed ID: 25945378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia.
    Errico F; Mothet JP; Usiello A
    J Pharm Biomed Anal; 2015 Dec; 116():7-17. PubMed ID: 25868730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia?
    Kantrowitz JT; Javitt DC
    Brain Res Bull; 2010 Sep; 83(3-4):108-21. PubMed ID: 20417696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sociality deficits in serine racemase knockout mice.
    Matveeva TM; Pisansky MT; Young A; Miller RF; Gewirtz JC
    Brain Behav; 2019 Oct; 9(10):e01383. PubMed ID: 31515952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamatergic aspects of schizophrenia.
    Tamminga C
    Br J Psychiatry Suppl; 1999; (37):12-5. PubMed ID: 10211134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [NMDA-type glutamate receptor and schizophrenia].
    Nishikawa T; Ishiwata S
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2013 Nov; 33(5-6):217-24. PubMed ID: 25069261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pivotal role for glutamate in the pathogenesis of schizophrenia, and its cognitive dysfunction.
    Hirsch SR; Das I; Garey LJ; de Belleroche J
    Pharmacol Biochem Behav; 1997 Apr; 56(4):797-802. PubMed ID: 9130307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Evidence on the key role of the metabotrobic glutamatergic receptors in the pathogenesis of schizophrenia: a "breakthrough" in pharmacological treatment].
    Pannese R; Minichino A; Pignatelli M; Delle Chiaie R; Biondi M; Nicoletti F
    Riv Psichiatr; 2012; 47(2):149-69. PubMed ID: 22622251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment.
    Moghaddam B; Javitt D
    Neuropsychopharmacology; 2012 Jan; 37(1):4-15. PubMed ID: 21956446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction.
    Kosten L; Verhaeghe J; Verkerk R; Thomae D; De Picker L; Wyffels L; Van Eetveldt A; Dedeurwaerdere S; Stroobants S; Staelens S
    Psychiatry Res Neuroimaging; 2016 Feb; 248():1-11. PubMed ID: 26803479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in glutamatergic signaling in the brain of dopamine supersensitivity psychosis and non-supersensitivity psychosis model rats.
    Oda Y; Fujita Y; Oishi K; Nakata Y; Takase M; Niitsu T; Kanahara N; Shirayama Y; Hashimoto K; Iyo M
    Psychopharmacology (Berl); 2017 Oct; 234(20):3027-3036. PubMed ID: 28744562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.