These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

627 related articles for article (PubMed ID: 30666864)

  • 1. Environmental Energy Harvesting Adapting to Different Weather Conditions and Self-Powered Vapor Sensor Based on Humidity-Responsive Triboelectric Nanogenerators.
    Ren Z; Ding Y; Nie J; Wang F; Xu L; Lin S; Chen X; Wang ZL
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6143-6153. PubMed ID: 30666864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor.
    Wang P; Pan L; Wang J; Xu M; Dai G; Zou H; Dong K; Wang ZL
    ACS Nano; 2018 Sep; 12(9):9433-9440. PubMed ID: 30205007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A High Sensitivity Self-Powered Wind Speed Sensor Based on Triboelectric Nanogenerators (TENGs).
    Liu Y; Liu J; Che L
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrated Solar Panel with a Triboelectric Nanogenerator Array for Synergistic Harvesting of Raindrop and Solar Energy.
    Ye C; Liu D; Chen P; Cao LNY; Li X; Jiang T; Wang ZL
    Adv Mater; 2023 Mar; 35(11):e2209713. PubMed ID: 36580631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.
    Wang ZL
    ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives.
    Wang ZL
    Faraday Discuss; 2014; 176():447-58. PubMed ID: 25406406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system.
    Yang Y; Zhu G; Zhang H; Chen J; Zhong X; Lin ZH; Su Y; Bai P; Wen X; Wang ZL
    ACS Nano; 2013 Oct; 7(10):9461-8. PubMed ID: 24044652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.
    Wang J; Ding W; Pan L; Wu C; Yu H; Yang L; Liao R; Wang ZL
    ACS Nano; 2018 Apr; 12(4):3954-3963. PubMed ID: 29595963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Powered, Long-Durable, and Highly Selective Oil-Solid Triboelectric Nanogenerator for Energy Harvesting and Intelligent Monitoring.
    Zhao J; Wang D; Zhang F; Pan J; Claesson P; Larsson R; Shi Y
    Nanomicro Lett; 2022 Aug; 14(1):160. PubMed ID: 35930162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotary Wind-driven Triboelectric Nanogenerator for Self-Powered Airflow Temperature Monitoring of Industrial Equipment.
    Li Y; Deng H; Wu H; Luo Y; Deng Y; Yuan H; Cui Z; Tang J; Xiong J; Zhang X; Xiao S
    Adv Sci (Weinh); 2024 Apr; 11(13):e2307382. PubMed ID: 38240464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omnidirectional Triboelectric Nanogenerator Operated by Weak Wind Towards a Self-Powered Anemoscope.
    Zaw NYW; Roh H; Kim I; Goh TS; Kim D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring.
    He L; Zhang C; Zhang B; Yang O; Yuan W; Zhou L; Zhao Z; Wu Z; Wang J; Wang ZL
    ACS Nano; 2022 Apr; 16(4):6244-6254. PubMed ID: 35312283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose-Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W m
    Zhang R; Dahlström C; Zou H; Jonzon J; Hummelgård M; Örtegren J; Blomquist N; Yang Y; Andersson H; Olsen M; Norgren M; Olin H; Wang ZL
    Adv Mater; 2020 Sep; 32(38):e2002824. PubMed ID: 32803872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Powered TENG with High Humidity Sensitivity from PVA Film Modified by LiCl and MXene.
    Wang J; Xia Z; Yao H; Zhang Q; Yang H
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47208-47220. PubMed ID: 37782003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing.
    Zheng H; Zi Y; He X; Guo H; Lai YC; Wang J; Zhang SL; Wu C; Cheng G; Wang ZL
    ACS Appl Mater Interfaces; 2018 May; 10(17):14708-14715. PubMed ID: 29659250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Humidity-Resistant, Conductive Fabric-Based Triboelectric Nanogenerator for Efficient Energy Harvesting and Human-Machine Interaction Sensing.
    He J; Xue Y; Liu H; Li J; Liu Q; Zhao Y; Mu L; Sun CL; Qu M
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43963-43975. PubMed ID: 37690053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Powered, Wireless, Remote Meteorologic Monitoring Based on Triboelectric Nanogenerator Operated by Scavenging Wind Energy.
    Zhang H; Wang J; Xie Y; Yao G; Yan Z; Huang L; Chen S; Pan T; Wang L; Su Y; Yang W; Lin Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32649-32654. PubMed ID: 27934164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.
    Wang X; Wang S; Yang Y; Wang ZL
    ACS Nano; 2015 Apr; 9(4):4553-62. PubMed ID: 25844537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flame-Retardant Textile-Based Triboelectric Nanogenerators for Fire Protection Applications.
    Cheng R; Dong K; Liu L; Ning C; Chen P; Peng X; Liu D; Wang ZL
    ACS Nano; 2020 Nov; 14(11):15853-15863. PubMed ID: 33155470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Polyimide-Based Water-Solid Triboelectric Nanogenerator for Hydropower Harvesting.
    Tang N; Zheng Y; Yuan M; Jin K; Haick H
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32106-32114. PubMed ID: 34223763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.