BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30666897)

  • 1. Phytoremediation of PAH-contaminated sediments with different organic matter contents by Potamogeton crispus L.
    Liu S; Meng F; Ding Z; Chi J
    Int J Phytoremediation; 2018; 20(13):1317-1323. PubMed ID: 30666897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remedial effects of Potamogeton crispus L. on PAH-contaminated sediments.
    Meng F; Huang J; Liu H; Chi J
    Environ Sci Pollut Res Int; 2015 May; 22(10):7547-56. PubMed ID: 25752637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Potamogeton crispus L. on bioavailability and biodegradation activity of pyrene in aged and unaged sediments.
    Meng F; Chi J
    J Hazard Mater; 2017 Feb; 324(Pt B):391-397. PubMed ID: 27836406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pilot-scale demonstration of phytoremediation of PAH-contaminated sediments by Hydrilla verticillata and Vallisneria spiralis.
    He Y; Chi J
    Environ Technol; 2019 Feb; 40(5):605-613. PubMed ID: 29076392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in soil aggregate-size distribution affects the dissipation of polycyclic aromatic hydrocarbons in long-term field-contaminated soils.
    Wei R; Ni J; Chen W; Yang Y
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22332-22339. PubMed ID: 28801893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils.
    Wei R; Ni J; Li X; Chen W; Yang Y
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):7994-8003. PubMed ID: 28108918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments.
    Qu M; Li H; Li N; Liu G; Zhao J; Hua Y; Zhu D
    Chemosphere; 2017 Feb; 168():1515-1522. PubMed ID: 27932038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipation of PAHs in saturated, dredged sediments: a field trial.
    Smith KE; Schwab AP; Banks MK
    Chemosphere; 2008 Aug; 72(10):1614-1619. PubMed ID: 18547603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The addition of biochar as a sustainable strategy for the remediation of PAH-contaminated sediments.
    Bianco F; Race M; Papirio S; Oleszczuk P; Esposito G
    Chemosphere; 2021 Jan; 263():128274. PubMed ID: 33297218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-scale understanding of the bioavailability of PAHs in sediment.
    Talley JW; Ghosh U; Tucker SG; Furey JS; Luthy RG
    Environ Sci Technol; 2002 Feb; 36(3):477-83. PubMed ID: 11871564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of vegetation on sedimentary organic matter composition and PAH desorption.
    Nichols EG; Gregory ST; Musella JS
    Environ Pollut; 2008 Dec; 156(3):928-35. PubMed ID: 18554760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using chemical desorption of PAHs from sediment to model biodegradation during bioavailability assessment.
    Spasojević JM; Maletić SP; Rončević SD; Radnović DV; Cučak DI; Tričković JS; Dalmacija BD
    J Hazard Mater; 2015; 283():60-9. PubMed ID: 25261761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons.
    Tam NF; Wong YS
    Mar Pollut Bull; 2008; 57(6-12):716-26. PubMed ID: 18374368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate-solubilizing bacteria improve the antioxidant enzyme activity of Potamogeton crispus L. and enhance the remediation effect on Cd-contaminated sediment.
    Cheng Y; Yuan J; Wang G; Hu Z; Luo W; Zhao X; Guo Y; Ji X; Hu W; Li M
    J Hazard Mater; 2024 May; 470():134305. PubMed ID: 38626677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of organic matter and clay content in sediments for bioavailability of pyrene.
    Spasojević J; Maletić S; Rončević S; Grgić M; Krčmar D; Varga N; Dalmacija B
    Water Sci Technol; 2018 Jan; 77(1-2):439-447. PubMed ID: 29377828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in PAH desorption and sediment organic matter composition between non-vegetated and recently vegetated fuel-oiled sediments.
    Nichols EG; Musella J
    Int J Phytoremediation; 2009 Jul; 11(5):463-78. PubMed ID: 19810349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of vegetation on sedimentary organic matter composition and polycyclic aromatic hydrocarbon attenuation.
    Gregory ST; Shea D; Guthrie-Nichols E
    Environ Sci Technol; 2005 Jul; 39(14):5285-92. PubMed ID: 16082958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the bioavailability and phytotoxicity of sediment spiked with polycyclic aromatic hydrocarbons.
    Rončević S; Spasojević J; Maletić S; Jazić JM; Isakovski MK; Agbaba J; Grgić M; Dalmacija B
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3239-46. PubMed ID: 26490893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments using Rhizophora mangle.
    Verâne J; Dos Santos NCP; da Silva VL; de Almeida M; de Oliveira OMC; Moreira ÍTA
    Mar Pollut Bull; 2020 Nov; 160():111687. PubMed ID: 33181957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed sequestration and release of PAHs in weathered sediment: the role of sediment structure and organic carbon properties.
    Rockne KJ; Shor LM; Young LY; Taghon GL; Kosson DS
    Environ Sci Technol; 2002 Jun; 36(12):2636-44. PubMed ID: 12099459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.