These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30667226)

  • 1. Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System.
    Vafakhah S; Guo L; Sriramulu D; Huang S; Saeedikhani M; Yang HY
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5989-5998. PubMed ID: 30667226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Formation of Prussian Blue Analogue Nanoparticles Decorated with Three-Dimensional Carbon Nanosheet Networks for Superior Hybrid Capacitive Deionization Performance.
    Wang S; Wang G; Wang Y; Song H; Lv S; Li T; Li C
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44049-44057. PubMed ID: 32880429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion Removal Performance, Structural/Compositional Dynamics, and Electrochemical Stability of Layered Manganese Oxide Electrodes in Hybrid Capacitive Deionization.
    Byles BW; Hayes-Oberst B; Pomerantseva E
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32313-32322. PubMed ID: 30182718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freestanding Ti
    Wang S; Li Z; Wang G; Wang Y; Ling Z; Li C
    ACS Nano; 2022 Jan; 16(1):1239-1249. PubMed ID: 34941266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism.
    Guo L; Mo R; Shi W; Huang Y; Leong ZY; Ding M; Chen F; Yang HY
    Nanoscale; 2017 Sep; 9(35):13305-13312. PubMed ID: 28858348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Ion Electrochemical Deionization System with Binder-Free Aerogel Electrodes.
    Zhao W; Ding M; Guo L; Yang HY
    Small; 2019 Mar; 15(9):e1805505. PubMed ID: 30714314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient lithium extraction using redox-active Prussian blue nanoparticles-anchored activated carbon intercalation electrodes via membrane capacitive deionization.
    Rethinasabapathy M; Bhaskaran G; Hwang SK; Ryu T; Huh YS
    Chemosphere; 2023 Sep; 336():139256. PubMed ID: 37331664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An energy efficient bi-functional electrode for continuous cation-selective capacitive deionization.
    Vafakhah S; Saeedikhani M; Tanhaei M; Huang S; Guo L; Chiam SY; Yang HY
    Nanoscale; 2020 Nov; 12(45):22917-22927. PubMed ID: 33185635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system.
    Sriramulu D; Yang HY
    Nanoscale; 2019 Mar; 11(13):5896-5908. PubMed ID: 30874713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of intercalation and EDLC electrosorption of 2D/3D interconnected architectures to boost capacitive deionization for water desalination via MoSe
    Du J; Xing W; Yu J; Feng J; Tang L; Tang W
    Water Res; 2023 May; 235():119831. PubMed ID: 36893590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na
    Cao J; Wang Y; Wang L; Yu F; Ma J
    Nano Lett; 2019 Feb; 19(2):823-828. PubMed ID: 30658040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na
    Xing S; Cheng Y; Yu F; Ma J
    J Colloid Interface Sci; 2021 Sep; 598():511-518. PubMed ID: 33934016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidating the capacitive desalination behavior of Na
    Liu Z; Ma W; Li H
    Nanoscale; 2020 Apr; 12(14):7586-7594. PubMed ID: 32057066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization.
    Reale ER; Shrivastava A; Smith KC
    Water Res; 2019 Nov; 165():114995. PubMed ID: 31450221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane-Free Hybrid Capacitive Deionization System Based on Redox Reaction for High-Efficiency NaCl Removal.
    Wang S; Wang G; Wu T; Li C; Wang Y; Pan X; Zhan F; Zhang Y; Wang S; Qiu J
    Environ Sci Technol; 2019 Jun; 53(11):6292-6301. PubMed ID: 31094203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Dual-Ion Capacitive Deionization System Design with Ultrahigh Desalination Performance.
    Jiang Y; Hou Z; Yan L; Gang H; Wang H; Chai L
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Hybrid Capacitive Deionization Performance by Sodium Titanium Phosphate/Reduced Porous Graphene Oxide Composites.
    Han C; Meng Q; Cao B; Tian G
    ACS Omega; 2019 Jul; 4(7):11455-11463. PubMed ID: 31460250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ternary-metal Prussian blue analogues as high-quality sodium ion capturing electrodes for rocking-chair capacitive deionization.
    Tu X; Liu Y; Wang K; Ding Z; Xu X; Lu T; Pan L
    J Colloid Interface Sci; 2023 Jul; 642():680-690. PubMed ID: 37031475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion Exchange Conversion of Na-Birnessite to Mg-Buserite for Enhanced and Preferential Cu
    Bao Y; Jin J; Ma M; Li M; Li F
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46646-46656. PubMed ID: 36210636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals.
    Shi W; Liu X; Deng T; Huang S; Ding M; Miao X; Zhu C; Zhu Y; Liu W; Wu F; Gao C; Yang SW; Yang HY; Shen J; Cao X
    Adv Mater; 2020 Aug; 32(33):e1907404. PubMed ID: 32656808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.