These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30667450)

  • 1. The roles of Lewis acidic additives in organotransition metal catalysis.
    Becica J; Dobereiner GE
    Org Biomol Chem; 2019 Feb; 17(8):2055-2069. PubMed ID: 30667450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-oxidation state indium-catalyzed C-C bond formation.
    Schneider U; Kobayashi S
    Acc Chem Res; 2012 Aug; 45(8):1331-44. PubMed ID: 22626010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineating the critical role of acid additives in Mn-catalysed C-H bond functionalisation processes.
    Hammarback LA; Robinson A; Lynam JM; Fairlamb IJS
    Chem Commun (Camb); 2019 Mar; 55(22):3211-3214. PubMed ID: 30806417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative Catalysis of Combined Systems of Transition-Metal Complexes with Lewis Acids: Theoretical Understanding.
    Guan W; Zeng G; Kameo H; Nakao Y; Sakaki S
    Chem Rec; 2016 Oct; 16(5):2405-2425. PubMed ID: 27666441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse bimetallic mechanisms emerging from transition metal Lewis acid/base pairs: development of co-catalysis with metal carbenes and metal carbonyl anions.
    Mankad NP
    Chem Commun (Camb); 2018 Feb; 54(11):1291-1302. PubMed ID: 29333547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.
    Athira C; Sunoj RB
    Org Biomol Chem; 2016 Dec; 15(1):246-255. PubMed ID: 27901171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhenium-catalysed reactions in chemical synthesis: selected case studies.
    Olding A; Tang M; Ho CC; Fuller RO; Bissember AC
    Dalton Trans; 2022 Feb; 51(8):3004-3018. PubMed ID: 35098957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometric and Catalytic C-C and C-H Bond Formation with B(C
    Soltani Y; Wilkins LC; Melen RL
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11995-11999. PubMed ID: 28703388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in natural product synthesis using metal-catalysed C-H bond functionalisation.
    McMurray L; O'Hara F; Gaunt MJ
    Chem Soc Rev; 2011 Apr; 40(4):1885-98. PubMed ID: 21390391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-F and C-H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: how fluorine tips the scales.
    Clot E; Eisenstein O; Jasim N; Macgregor SA; McGrady JE; Perutz RN
    Acc Chem Res; 2011 May; 44(5):333-48. PubMed ID: 21410234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental-Computational Synergy for Selective Pd(II)-Catalyzed C-H Activation of Aryl and Alkyl Groups.
    Yang YF; Hong X; Yu JQ; Houk KN
    Acc Chem Res; 2017 Nov; 50(11):2853-2860. PubMed ID: 29115826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition-metal-catalyzed C-N bond forming reactions using organic azides as the nitrogen source: a journey for the mild and versatile C-H amination.
    Shin K; Kim H; Chang S
    Acc Chem Res; 2015 Apr; 48(4):1040-52. PubMed ID: 25821998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic C-H bond activation at nanoscale Lewis acidic aluminium fluorides: H/D exchange reactions at aromatic and aliphatic hydrocarbons.
    Prechtl MH; Teltewskoi M; Dimitrov A; Kemnitz E; Braun T
    Chemistry; 2011 Dec; 17(51):14385-8. PubMed ID: 22125129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambiphilic Molecules: From Organometallic Curiosity to Metal-Free Catalysts.
    Fontaine FG; Rochette É
    Acc Chem Res; 2018 Feb; 51(2):454-464. PubMed ID: 29308653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoselective catalysis with organosoluble Lewis acidic polyoxotungstates.
    Dupré N; Rémy P; Micoine K; Boglio C; Thorimbert S; Lacôte E; Hasenknopf B; Malacria M
    Chemistry; 2010 Jun; 16(24):7256-64. PubMed ID: 20455223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bis-Boron Compounds in Catalysis: Bidentate and Bifunctional Activation.
    Schweighauser L; Wegner HA
    Chemistry; 2016 Sep; 22(40):14094-103. PubMed ID: 27490466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimetallic redox synergy in oxidative palladium catalysis.
    Powers DC; Ritter T
    Acc Chem Res; 2012 Jun; 45(6):840-50. PubMed ID: 22029861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis.
    Yoon TP
    Acc Chem Res; 2016 Oct; 49(10):2307-2315. PubMed ID: 27505691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organometallic fluorine chemistry of palladium and rhodium: studies toward aromatic fluorination.
    Grushin VV
    Acc Chem Res; 2010 Jan; 43(1):160-71. PubMed ID: 19788304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.