BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30668669)

  • 1. Discovery and Evolution of New Domains in Yeast Heterochromatin Factor Sir4 and Its Partner Esc1.
    Faure G; Jézéquel K; Roisné-Hamelin F; Bitard-Feildel T; Lamiable A; Marcand S; Callebaut I
    Genome Biol Evol; 2019 Feb; 11(2):572-585. PubMed ID: 30668669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sir4 H-BRCT domain interacts with phospho-proteins to sequester and repress yeast heterochromatin.
    Deshpande I; Keusch JJ; Challa K; Iesmantavicius V; Gasser SM; Gut H
    EMBO J; 2019 Oct; 38(20):e101744. PubMed ID: 31515872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrotransposon target site selection by imitation of a cellular protein.
    Brady TL; Fuerst PG; Dick RA; Schmidt C; Voytas DF
    Mol Cell Biol; 2008 Feb; 28(4):1230-9. PubMed ID: 18086891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning.
    Andrulis ED; Zappulla DC; Ansari A; Perrod S; Laiosa CV; Gartenberg MR; Sternglanz R
    Mol Cell Biol; 2002 Dec; 22(23):8292-301. PubMed ID: 12417731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins.
    Taddei A; Hediger F; Neumann FR; Bauer C; Gasser SM
    EMBO J; 2004 Mar; 23(6):1301-12. PubMed ID: 15014445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variants of the Sir4 Coiled-Coil Domain Improve Binding to Sir3 for Heterochromatin Formation in
    Samel A; Rudner A; Ehrenhofer-Murray AE
    G3 (Bethesda); 2017 Apr; 7(4):1117-1126. PubMed ID: 28188183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly.
    Zill OA; Scannell D; Teytelman L; Rine J
    PLoS Biol; 2010 Nov; 8(11):e1000550. PubMed ID: 21151344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between Heterochromatic Loci Allows the Abundance of the Silencing Protein, Sir4, to Regulate de novo Assembly of Heterochromatin.
    Larin ML; Harding K; Williams EC; Lianga N; Doré C; Pilon S; Langis É; Yanofsky C; Rudner AD
    PLoS Genet; 2015 Nov; 11(11):e1005425. PubMed ID: 26587833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ku complex in silencing the cryptic mating-type loci of Saccharomyces cerevisiae.
    Patterson EE; Fox CA
    Genetics; 2008 Oct; 180(2):771-83. PubMed ID: 18716325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast.
    Luo K; Vega-Palas MA; Grunstein M
    Genes Dev; 2002 Jun; 16(12):1528-39. PubMed ID: 12080091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The SCFDia2 ubiquitin E3 ligase ubiquitylates Sir4 and functions in transcriptional silencing.
    Burgess RJ; Zhou H; Han J; Li Q; Zhang Z
    PLoS Genet; 2012; 8(7):e1002846. PubMed ID: 22844255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast silencing factor Sir4 and a subset of nucleoporins form a complex distinct from nuclear pore complexes.
    Lapetina DL; Ptak C; Roesner UK; Wozniak RW
    J Cell Biol; 2017 Oct; 216(10):3145-3159. PubMed ID: 28883038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rtt107/Esc4 binds silent chromatin and DNA repair proteins using different BRCT motifs.
    Zappulla DC; Maharaj AS; Connelly JJ; Jockusch RA; Sternglanz R
    BMC Mol Biol; 2006 Nov; 7():40. PubMed ID: 17094803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae.
    Crotti LB; Basrai MA
    EMBO J; 2004 Apr; 23(8):1804-14. PubMed ID: 15057281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
    Rudner AD; Hall BE; Ellenberger T; Moazed D
    Mol Cell Biol; 2005 Jun; 25(11):4514-28. PubMed ID: 15899856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple pathways tether telomeres and silent chromatin at the nuclear periphery: functional implications for sir-mediated repression.
    Taddei A; Gartenberg MR; Neumann FR; Hediger F; Gasser SM
    Novartis Found Symp; 2005; 264():140-56; discussion 156-65, 227-30. PubMed ID: 15773752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of conditional alleles of the yeast SIR2 gene.
    Hickman M; McCullough K; Woike A; Raducha-Grace L; Rozario T; Dula ML; Anderson E; Margalit D; Holmes SG
    J Mol Biol; 2007 Apr; 367(5):1246-57. PubMed ID: 17316680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Yeast Heterochromatin Protein Sir3 Experienced Functional Changes in the AAA+ Domain After Gene Duplication and Subfunctionalization.
    Hanner AS; Rusche LN
    Genetics; 2017 Oct; 207(2):517-528. PubMed ID: 28827288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for step-wise assembly of heterochromatin in yeast.
    Moazed D; Rudner AD; Huang J; Hoppe GJ; Tanny JC
    Novartis Found Symp; 2004; 259():48-56; discussion 56-62, 163-9. PubMed ID: 15171246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sir3 C-terminal domain involvement in the initiation and spreading of heterochromatin.
    Liaw H; Lustig AJ
    Mol Cell Biol; 2006 Oct; 26(20):7616-31. PubMed ID: 16908543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.