These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30668822)

  • 1. Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions.
    Shinkawa H; Kajikawa M; Nomura Y; Ogura M; Sawaragi Y; Yamano T; Nakagami H; Sugiyama N; Ishihama Y; Kanesaki Y; Yoshikawa H; Fukuzawa H
    Plant Cell Physiol; 2019 Apr; 60(4):916-930. PubMed ID: 30668822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algal dual-specificity tyrosine phosphorylation-regulated kinase, triacylglycerol accumulation regulator1, regulates accumulation of triacylglycerol in nitrogen or sulfur deficiency.
    Kajikawa M; Sawaragi Y; Shinkawa H; Yamano T; Ando A; Kato M; Hirono M; Sato N; Fukuzawa H
    Plant Physiol; 2015 Jun; 168(2):752-64. PubMed ID: 25922058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A YAK1-type protein kinase, triacylglycerol accumulation regulator 1, in the green alga Chlamydomonas reinhardtii is a potential regulator of cell division and differentiation into gametes during photoautotrophic nitrogen deficiency.
    Tsuji Y; Kinoshita A; Tsukahara M; Ishikawa T; Shinkawa H; Yamano T; Fukuzawa H
    J Gen Appl Microbiol; 2023 Jun; 69(1):1-10. PubMed ID: 36002293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relationship of Triacylglycerol and Starch Accumulation to Carbon and Energy Flows during Nutrient Deprivation in Chlamydomonas reinhardtii.
    Juergens MT; Disbrow B; Shachar-Hill Y
    Plant Physiol; 2016 Aug; 171(4):2445-57. PubMed ID: 27325664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.
    Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H
    Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a mutant defective in triacylglycerol accumulation in nitrogen-starved Chlamydomonas reinhardtii.
    Hung CH; Kanehara K; Nakamura Y
    Biochim Biophys Acta; 2016 Sep; 1861(9 Pt B):1282-1293. PubMed ID: 27060488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Chlamydomonas transcription factor MYB1 mediates lipid accumulation under nitrogen depletion.
    Choi BY; Shim D; Kong F; Auroy P; Lee Y; Li-Beisson Y; Lee Y; Yamaoka Y
    New Phytol; 2022 Jul; 235(2):595-610. PubMed ID: 35383411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii.
    Gardner RD; Lohman E; Gerlach R; Cooksey KE; Peyton BM
    Biotechnol Bioeng; 2013 Jan; 110(1):87-96. PubMed ID: 22767335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyunsaturated triacylglycerol accumulation mainly attributes to turnover of de novo-synthesized membrane lipids in stress-induced starchless Chlamydomonas.
    Yang M; Xu X; Lei H; Yang Z; Xie X; Gong Z
    Plant Cell Rep; 2024 Sep; 43(10):240. PubMed ID: 39317879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves.
    Siaut M; Cuiné S; Cagnon C; Fessler B; Nguyen M; Carrier P; Beyly A; Beisson F; Triantaphylidès C; Li-Beisson Y; Peltier G
    BMC Biotechnol; 2011 Jan; 11():7. PubMed ID: 21255402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detailed identification of fatty acid isomers sheds light on the probable precursors of triacylglycerol accumulation in photoautotrophically grown Chlamydomonas reinhardtii.
    Sakurai K; Moriyama T; Sato N
    Eukaryot Cell; 2014 Feb; 13(2):256-66. PubMed ID: 24337111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and Characterization of Chlamydomonas Autophagy-Related Mutants in Nutrient-Deficient Conditions.
    Kajikawa M; Yamauchi M; Shinkawa H; Tanaka M; Hatano K; Nishimura Y; Kato M; Fukuzawa H
    Plant Cell Physiol; 2019 Jan; 60(1):126-138. PubMed ID: 30295899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii.
    Shtaida N; Khozin-Goldberg I; Solovchenko A; Chekanov K; Didi-Cohen S; Leu S; Cohen Z; Boussiba S
    J Exp Bot; 2014 Dec; 65(22):6563-76. PubMed ID: 25210079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii.
    Fan J; Yan C; Andre C; Shanklin J; Schwender J; Xu C
    Plant Cell Physiol; 2012 Aug; 53(8):1380-90. PubMed ID: 22642988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Sone T; Era A; Miyagishima SY; Shimojima M; Ohta H; Tanaka K
    Plant Mol Biol; 2015 Oct; 89(3):309-18. PubMed ID: 26350402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae.
    Imamura S; Kawase Y; Kobayashi I; Shimojima M; Ohta H; Tanaka K
    Plant Signal Behav; 2016; 11(3):e1149285. PubMed ID: 26855321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional photosystem I maintains proper energy balance during nitrogen depletion in
    Gargouri M; Bates PD; Park JJ; Kirchhoff H; Gang DR
    Biotechnol Biofuels; 2017; 10():89. PubMed ID: 28413444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LIP4 Is Involved in Triacylglycerol Degradation in Chlamydomonas reinhardtii.
    Warakanont J; Li-Beisson Y; Benning C
    Plant Cell Physiol; 2019 Jun; 60(6):1250-1259. PubMed ID: 30796452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined intracellular nitrate and NIT2 effects on storage carbohydrate metabolism in Chlamydomonas.
    Remacle C; Eppe G; Coosemans N; Fernandez E; Vigeolas H
    J Exp Bot; 2014 Jan; 65(1):23-33. PubMed ID: 24187418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism.
    Miller R; Wu G; Deshpande RR; Vieler A; Gärtner K; Li X; Moellering ER; Zäuner S; Cornish AJ; Liu B; Bullard B; Sears BB; Kuo MH; Hegg EL; Shachar-Hill Y; Shiu SH; Benning C
    Plant Physiol; 2010 Dec; 154(4):1737-52. PubMed ID: 20935180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.