These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 30668822)
21. Nitrogen starvation leads to TOR kinase-mediated downregulation of fatty acid synthesis in the algae Chlorella sorokiniana and Chlamydomonas reinhardtii. Vijayan J; Alvarez S; Naldrett MJ; Morse W; Maliva A; Wase N; Riekhof WR BMC Plant Biol; 2024 Aug; 24(1):753. PubMed ID: 39107711 [TBL] [Abstract][Full Text] [Related]
22. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. Boyle NR; Page MD; Liu B; Blaby IK; Casero D; Kropat J; Cokus SJ; Hong-Hermesdorf A; Shaw J; Karpowicz SJ; Gallaher SD; Johnson S; Benning C; Pellegrini M; Grossman A; Merchant SS J Biol Chem; 2012 May; 287(19):15811-25. PubMed ID: 22403401 [TBL] [Abstract][Full Text] [Related]
23. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Cakmak T; Angun P; Demiray YE; Ozkan AD; Elibol Z; Tekinay T Biotechnol Bioeng; 2012 Aug; 109(8):1947-57. PubMed ID: 22383222 [TBL] [Abstract][Full Text] [Related]
24. Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Liu B; Vieler A; Li C; Daniel Jones A; Benning C Bioresour Technol; 2013 Oct; 146():310-316. PubMed ID: 23948268 [TBL] [Abstract][Full Text] [Related]
25. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934 [TBL] [Abstract][Full Text] [Related]
26. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Jüppner J; Mubeen U; Leisse A; Caldana C; Wiszniewski A; Steinhauser D; Giavalisco P Plant J; 2018 Jan; 93(2):355-376. PubMed ID: 29172247 [TBL] [Abstract][Full Text] [Related]
27. The phosphatidylethanolamine-binding protein DTH1 mediates degradation of lipid droplets in Lee J; Yamaoka Y; Kong F; Cagnon C; Beyly-Adriano A; Jang S; Gao P; Kang BH; Li-Beisson Y; Lee Y Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23131-23139. PubMed ID: 32868427 [TBL] [Abstract][Full Text] [Related]
28. Galactolipid DGDG and Betaine Lipid DGTS Direct De Novo Synthesized Linolenate into Triacylglycerol in a Stress-Induced Starchless Mutant of Chlamydomonas reinhardtii. Yang M; Kong F; Xie X; Wu P; Chu Y; Cao X; Xue S Plant Cell Physiol; 2020 Apr; 61(4):851-862. PubMed ID: 32061132 [TBL] [Abstract][Full Text] [Related]
29. Triacylglycerol accumulates exclusively outside the chloroplast in short-term nitrogen-deprived Chlamydomonas reinhardtii. Yang M; Meng Y; Chu Y; Fan Y; Cao X; Xue S; Chi Z Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Dec; 1863(12):1478-1487. PubMed ID: 30266428 [TBL] [Abstract][Full Text] [Related]
30. Large fluxes of fatty acids from membranes to triacylglycerol and back during N-deprivation and recovery in Chlamydomonas. Young DY; Shachar-Hill Y Plant Physiol; 2021 Apr; 185(3):796-814. PubMed ID: 33822218 [TBL] [Abstract][Full Text] [Related]
31. High-Level Accumulation of Triacylglycerol and Starch in Photoautotrophically Grown Chlamydomonas debaryana NIES-2212. Toyoshima M; Sato N Plant Cell Physiol; 2015 Dec; 56(12):2447-56. PubMed ID: 26542110 [TBL] [Abstract][Full Text] [Related]
32. Formation of Spherical Palmelloid Colony with Enhanced Lipid Accumulation by Gel Encapsulation of Chlamydomonas debaryana NIES-2212. Yoshitomi T; Kaminaga S; Sato N; Toyoshima M; Moriyama T; Yoshimoto K Plant Cell Physiol; 2020 Jan; 61(1):158-168. PubMed ID: 31589321 [TBL] [Abstract][Full Text] [Related]
34. Endoplasmic reticulum acyltransferase with prokaryotic substrate preference contributes to triacylglycerol assembly in Kim Y; Terng EL; Riekhof WR; Cahoon EB; Cerutti H Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1652-1657. PubMed ID: 29382746 [TBL] [Abstract][Full Text] [Related]
35. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Wang ZT; Ullrich N; Joo S; Waffenschmidt S; Goodenough U Eukaryot Cell; 2009 Dec; 8(12):1856-68. PubMed ID: 19880756 [TBL] [Abstract][Full Text] [Related]
36. Triacylglycerol Production in the Snow Algae Chlamydomonas nivalis under Different Nutrient Conditions. Liu YC; Nakamura Y Lipids; 2019 Apr; 54(4):255-262. PubMed ID: 31025716 [TBL] [Abstract][Full Text] [Related]
38. The disassembly of lipid droplets in Chlamydomonas. Li-Beisson Y; Kong F; Wang P; Lee Y; Kang BH New Phytol; 2021 Aug; 231(4):1359-1364. PubMed ID: 34028037 [TBL] [Abstract][Full Text] [Related]
39. High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii. Li X; Jonikas MC Subcell Biochem; 2016; 86():223-47. PubMed ID: 27023238 [TBL] [Abstract][Full Text] [Related]
40. Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Blaby IK; Glaesener AG; Mettler T; Fitz-Gibbon ST; Gallaher SD; Liu B; Boyle NR; Kropat J; Stitt M; Johnson S; Benning C; Pellegrini M; Casero D; Merchant SS Plant Cell; 2013 Nov; 25(11):4305-23. PubMed ID: 24280389 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]