These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 30668971)
21. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. Martens EC; Lowe EC; Chiang H; Pudlo NA; Wu M; McNulty NP; Abbott DW; Henrissat B; Gilbert HJ; Bolam DN; Gordon JI PLoS Biol; 2011 Dec; 9(12):e1001221. PubMed ID: 22205877 [TBL] [Abstract][Full Text] [Related]
22. Outer membrane utilisomes mediate glycan uptake in gut Bacteroidetes. White JBR; Silale A; Feasey M; Heunis T; Zhu Y; Zheng H; Gajbhiye A; Firbank S; Baslé A; Trost M; Bolam DN; van den Berg B; Ranson NA Nature; 2023 Jun; 618(7965):583-589. PubMed ID: 37286596 [TBL] [Abstract][Full Text] [Related]
23. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Zhang M; Chekan JR; Dodd D; Hong PY; Radlinski L; Revindran V; Nair SK; Mackie RI; Cann I Proc Natl Acad Sci U S A; 2014 Sep; 111(35):E3708-17. PubMed ID: 25136124 [TBL] [Abstract][Full Text] [Related]
24. Preferential use of plant glycans for growth by Bacteroides ovatus. Centanni M; Bell TJ; Sims IM; Tannock GW Anaerobe; 2020 Dec; 66():102276. PubMed ID: 32927049 [TBL] [Abstract][Full Text] [Related]
25. Linear and branched Singh RP; Rajarammohan S; Thakur R; Hassan M Gut Microbes; 2020 Nov; 12(1):1-18. PubMed ID: 33043794 [No Abstract] [Full Text] [Related]
26. Degradation of xylan by human gut Bacteroides xylanisolvens XB1A. Zhao T; Yue H; Peng J; Nie Y; Wu L; Li T; Niu W; Li C; Zhang Z; Li M; Ding K Carbohydr Polym; 2023 Sep; 315():121005. PubMed ID: 37230606 [TBL] [Abstract][Full Text] [Related]
27. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Foley MH; Cockburn DW; Koropatkin NM Cell Mol Life Sci; 2016 Jul; 73(14):2603-17. PubMed ID: 27137179 [TBL] [Abstract][Full Text] [Related]
28. Hemicellulose-remodelling transglycanase activities from charophytes: towards the evolution of the land-plant cell wall. Franková L; Fry SC Plant J; 2021 Oct; 108(1):7-28. PubMed ID: 34547150 [TBL] [Abstract][Full Text] [Related]
29. A polysaccharide utilization locus from an uncultured bacteroidetes phylotype suggests ecological adaptation and substrate versatility. Mackenzie AK; Naas AE; Kracun SK; Schückel J; Fangel JU; Agger JW; Willats WG; Eijsink VG; Pope PB Appl Environ Microbiol; 2015 Jan; 81(1):187-95. PubMed ID: 25326301 [TBL] [Abstract][Full Text] [Related]
30. How do gut microbes break down dietary fiber? Terrapon N; Henrissat B Trends Biochem Sci; 2014 Apr; 39(4):156-8. PubMed ID: 24613530 [TBL] [Abstract][Full Text] [Related]
31. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes. Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806 [TBL] [Abstract][Full Text] [Related]
32. Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xylo-oligosaccharides utilization to Escherichia coli. Tauzin AS; Laville E; Xiao Y; Nouaille S; Le Bourgeois P; Heux S; Portais JC; Monsan P; Martens EC; Potocki-Veronese G; Bordes F Mol Microbiol; 2016 Nov; 102(4):579-592. PubMed ID: 27573446 [TBL] [Abstract][Full Text] [Related]
35. Evolution of mixed-linkage (1 -> 3, 1 -> 4)-β-D-glucan (MLG) and xyloglucan in Equisetum (horsetails) and other monilophytes. Xue X; Fry SC Ann Bot; 2012 Apr; 109(5):873-86. PubMed ID: 22378839 [TBL] [Abstract][Full Text] [Related]
36. Characterization of an alkali-stable xyloglucanase/mixed-linkage β-glucanase Pgl5A from Paenibacillus sp. S09. Cheng R; Cheng L; Wang L; Fu R; Sun X; Li J; Wang S; Zhang J Int J Biol Macromol; 2019 Nov; 140():1158-1166. PubMed ID: 31465806 [TBL] [Abstract][Full Text] [Related]
37. Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Leth ML; Ejby M; Workman C; Ewald DA; Pedersen SS; Sternberg C; Bahl MI; Licht TR; Aachmann FL; Westereng B; Abou Hachem M Nat Microbiol; 2018 May; 3(5):570-580. PubMed ID: 29610517 [TBL] [Abstract][Full Text] [Related]
38. Characterisation of a novel endo-xyloglucanase (XcXGHA) from Xanthomonas that accommodates a xylosyl-substituted glucose at subsite -1. Feng T; Yan KP; Mikkelsen MD; Meyer AS; Schols HA; Westereng B; Mikkelsen JD Appl Microbiol Biotechnol; 2014 Dec; 98(23):9667-79. PubMed ID: 24898632 [TBL] [Abstract][Full Text] [Related]
39. The Glycolytic Versatility of Benítez-Páez A; Gómez Del Pulgar EM; Sanz Y Front Cell Infect Microbiol; 2017; 7():383. PubMed ID: 28971068 [No Abstract] [Full Text] [Related]
40. Novel endo-(1,4)-β-glucanase Bgh12A and xyloglucanase Xgh12B from Aspergillus cervinus belong to GH12 subgroup I and II, respectively. Rykov SV; Kornberger P; Herlet J; Tsurin NV; Zorov IN; Zverlov VV; Liebl W; Schwarz WH; Yarotsky SV; Berezina OV Appl Microbiol Biotechnol; 2019 Sep; 103(18):7553-7566. PubMed ID: 31332485 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]